CHAPTER-12

LINEAR PROGRAMMING PROBLEMS

01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	The optimum value of the objective function is attained at the points	1
Ξ.	(A) given by the intersections of inequalities with the xx - axis only.	
	(B) given by the intersections of inequalities with xx - axis and yy - axis only.	
	(C) given by the corner points of the feasible region.	
İ	(D) none of these.	
2.	Objective function of an LPP is	1
	(A) a constraints	
	(B) a function which is to be optimized.	
	(C) A relation between variables. (D) none of these.	
3.	Which of the following is correct?	1
Э.	(A) LPP always has a unique solution.	1
	(B) every LPP has a unique solution.	
	(C) LPP admits two optimal solution.	
	(D) if an LPP admits two optimal solution, then it has infinitely many optimal solution.	
4.	The feasible region of an LPP is shown in figure. If $Z = 3x + 9y$, then the minimum value of	1
	Z occurs at	
	<u> </u>	
	(0,20)	
	(0,10) (15,15)	
	(5,5)	
	×	
	(A) (5.5)	
	(A) (5,5) (B) (0,5)	
	(B) (0,5) (C) (0,20)	
	(D)(15,15)	
5.	The corner points of the feasible region determined by the system of linear constraints are	1
	(0,2),(3,0),(6,0),(6,8)(0,2),(3,0),(6,0),(6,8) and $(0,5)(0,5)$. The objective function	
	$_{is}F = 4x + 6y.F = 4x + 6y.$	
	The minimum value of ^{FF} occurs at	
	$(A)^{(0,2)(0,2)}$ only	
	(B) $(3,0)(3,0)$ only	
	(C) the mid-point of the line segment joining the points $(0,2)(0,2)$ and $(3,0)(3,0)$	
ı	(D) any point on the line segment joining the points (0,2)(0,2) and (3,0)(3,0)	
6.	An LPP is one that is concerned with finding of a linear function	1
	calledfunction of several variables (say *xx* and *yy*), subject to the	
	conditions that the variables are and satisfy set of linear inequalities called	
	linear constraints.	
	(A) objective, optimal value, negative.	
	(B) optimal value, objective, negative.	
	(C) optimal value, objective, negative.	
	(D) objective, optimal value, non – negative	

7.	Which of the following points is not in the feasible region of the constraints:	1
	$x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$ $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$	
	(A) $(0, -1)$ (B) $(0, 1)$ (C) $(2, 2)$ (D) $(4, 0)$	
	(A) (0, -1) (B) (0, 1) (C) (2, 2) (D) (4, 0)	
8.	If the feasible region for an LPP is, then the optimal value of the objective	1
	function $Z = ax + byZ = ax + by$ may or may not exist.	
	(A) bounded.	
	(B) unbounded.	
	(C) in circle form.	
	(D) in pentagon form.	
9.	The solution set of the inequation $x + 2y > 3x + 2y > 3$ is	1
	(A) half plane containing the origin.	
	(B) open half plane not containing the origin.	
	(C) first quadrant	
10	(D) none of these.	1
10.	Corner points of the feasible region determined by the system of linear constraints are $(0,3), (1,1)(0,3), (1,1)$ and $(3,0)(3,0)$. The objective function is $Z = px + qy$	1
	and (x,y) . The objective function is $x = y + y + y = y + y = y = y = y = y = y$	
	Z = px + qy, where $p, q > 0.p, q > 0$. Condition on pp and qq so that the minimum of ZZ	
	occurs at $(3,0)(3,0)$ and $(1,1)(1,1)$ is	
	$(A) p = 2qp = 2q$ $(B) p = \frac{q}{2}p = \frac{q}{2}$	
	$(B)^{p = \frac{4}{2}p = \frac{4}{2}}$	
	$\binom{(B)}{(C)}p = 3qp = 3q$	
	$(D)^p = qp = q$	
11.	The solution set of the inequality $3x + 4y < 4$ is	1
	(a) An open half-plane not containing the origin(b) An open half-plane containing the origin	
	(c) The whole xy plane not containing the line $3x + 4y = 4$	
	(d) A closed half-plane containing the origin	
12.	The corner points of the shaded unbounded feasible region of an LPP are (0,4), (0.6,1.6) and	1
	(3,0) as shown in the figure. The minimum value of the objective function $Z = 4x + 6y$	
	occurs at (a) (0.6, 1.6) only	
	(a) (0.0, 1.0) only (b) (3,0) only	
	(c) (0.6, 1.6) and (3,0) only	
	(d) At every point of the line segment joining the points (0.6, 1.6) and (3,0)	
13.	The corner points of the feasible region determined by the system of linear constraints are	1
	(0,3), $(1,1)$ and $(3,0)$. Let $Z = px + qy$, where $p,q > 0$. Conditions on p and q so that the minimum of z occurs at $(3,0)$ and $(1,1)$.	
	(a) $p = 3q$ (c) $p = 3q$	
	(b) $2p = q$ (d) $p = q$	
14.	Objective function of an LPP is	1
	(a) a constraint	
	(b) a function to be optimized(c) a relation between variables	
	(d) none of these	
15.	Let X_1 and X_2 are optimal solutions of a LPP, then	1
	(a) $X = \lambda X_1 + (1 - \lambda)X_2$, where $\lambda \in R$ is also an optimal solution.	

	(b) $V = 1V + (1 - 1)V$ where $0 < 1 < 1$ gives an antimal solution	
	(b) $X = \lambda X_1 + (1 - \lambda)X_2$, where $0 \le \lambda \le 1$ gives an optimal solution.	
	(c) $X = \lambda X_1 + (1 + \lambda)X_2$, where $0 \le \lambda \le 1$ gives an optimal solution.	
4.6	(d) None of these	1
16.	For the LP problem Minimize $z = 2x + 3y$ the coordinates of the corner points of the bounded	1
	feasible region are $A(3,3)$, $B(20,3)$, $C(20,10)$, $D(18,12)$ and $E(12,12)$. The minimum	
	value of Z is	
	(a) 49	
	(b) 15	
	(c) 10	
	(d) 05	
17.	For the LP problem maximize $z = 2x + 3y$. The coordinates of the corner points of the	1
	bounded feasible region are $A(3,3)$, $B(20,3)$, $C(20,10)$, $D(18,12)$ and $E(12,12)$. The	
	minimum value of z is	
	(a) 72	
	(b) 80	
	(c) 82	
	(d) 70	
18.	Solution of following LP problem Maximize $z = 2x + 6y$ subject to $-x + y \le 1$, $2x + y \le 1$	1
	$2, x, y \ge 0$	
	(a) $\frac{4}{3}$	
	(a) 3 1	
	(b) $\frac{1}{3}$	
	(b) $\frac{3}{3}$ (c) $\frac{26}{3}$	
- 10	(d) No feasible region	4
19.	Solution of the following LP problem Minimize $z = -3x + 2y$	1
	subject to $0 \le x \le 4$, $1 \le y \le 6$, $x + y \le 5$ is	
	(a) -10 (b) 0 (c) 2 (d) 10	
20.	For the LP problem Minimize $z = 2x + 3y$ the coordinates of the corner points of the	1
	bounded feasible region are $A(3,3)$, $B(20,3)$, $C(20,10)$, $D(18,12)$ and $E(12,12)$. The	
	minimum value of z is	
	(a) 49	
	(b) 15	
	(c) 10	
	(d) 05	
I		
21.	Objective function of a linear programming problem is	1
21.	Objective function of a linear programming problem is (A) constant	1
21.	Objective function of a linear programming problem is	1
21.	Objective function of a linear programming problem is (A) constant	1
21.	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none	1
21.	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized	1
	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none	
	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function	
	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function $Z = 5x + 10y$	
	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function $Z = 5x + 10y$ subject to constraints	
	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function $Z = 5x + 10y$ subject to constraints $x + 2y \le 120$	
	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function $Z = 5x + 10y$ subject to constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$	
	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function $Z = 5x + 10y$ subject to constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0$ is	
22.	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function $Z = 5x + 10y$ subject to constraints $x+2y \le 120$ $x+y \ge 60$ $x-2y \ge 0$ $x,y \ge 0 \text{ is}$ A) 300 (B)600 (C) 400 (D)none	1
	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function $Z = 5x + 10y$ subject to constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x, y \ge 0 \text{ is}$ A) 300 (B)600 (C) 400 (D)none Observe the following:	
22.	Objective function of a linear programming problem is (A) constant (B) A relation between variables (C) function to be optimized (D) none The maximum value of the objective function $Z = 5x + 10y$ subject to constraints $x+2y \le 120$ $x+y \ge 60$ $x-2y \ge 0$ $x,y \ge 0 \text{ is}$ A) 300 (B)600 (C) 400 (D)none	1

	(A) have solution for positive x and y	
	1 ' '	
	(B) have no solution for positive x and y	
	(C) have solution for all x	
	(D) have solution for all y	
24.	The maximum value of $Z = 3x + 4y$	1
	subject to constraints	
	$x+y \le 40$	
	$x+2y \le 60,$	
	x and y both positive is	
	(A) 120 (B)140 (C)100 (D) none	
25.	The minimum value of the objective function $Z = x+2y$	1
	subject to constraints	
	$x+2y \ge 100$,	
	$2x-y \leq 0$,	
	$2x+y \le 200$	
	$x,y \ge 0$ is	
	A) 100 (B)600 (C) 400 (D)none	
26.	The optimal value of the objective function is attained at the points	1
	(A) on x axis	-
	(B)on y axis	
	(C)which are common points of the feasible region	
	(D)none	
27.	What do you mean by the optimal value?	1
27.	A) The minimum value only	1
	(B)The maximum value only	
	(C) The maximum or minimum value (D)none	
28.	The restrictions on the variables in linear programming problem are known as	1
20.	(A) optimal values	1
	(B)constraints	
	(C) feasible region	
20	(D)none	
29.	The maximum value of the objective function	1
	Z = x + 2y	
	subject to constraints	
	$x+2y \ge 100,$	
	$2x-y \le 0,$	
	$2x+y \le 200$	
	$x, y \ge 0$ is	
	(A) 100 (B)600 (C) 400 (D)none	
30.	If the feasible region lies only on a line segment, the optimal value	1
	(A) lies on the line segment	
	(B) lies on the line if produced to one side (C) lies on the line if produced to both sides	
	(D)none	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	ANSWER: C	1
2.	ANSWER: B	1
3.	ANSWER: D	1
4.	ANSWER -A	1
5.	ANSWER: D	1
6.	ANSWER: C	1
7.	ANSWER -A	1
8.	ANSWER: B	1
9.	ANSWER: B	1
10.	ANSWER: B	1
11.	(b)	1
12.	(d)	1
13.	(b)	1
14.	(b)	1
15.	(b)	1
16.	(a)	1
17.	(a)	1
18.	(c)	1
19.	(a)	1
20.	(b)	1
21.	В	1
22.	В	1
23.	A	1
24.	В	1
25.	A	1
26.	C	1
27.	C	1
28.	В	1
29.	С	1
		+
30.	A	1