CHAPTER-2 RELATIONS & FUNCTIONS 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Y-Values Image: Second state st	1
2.	Let n (A) = m, and n (B) = n. Then the total number of non-empty relations that can be defined from A to B is (a) m ⁿ (b) n ^m - 1 (c) mn - 1 (d) 2 ^{mn} - 1	1
3.	If $f(x) = x^2 + 2$, $x \in R$, then the range of $f(x)$ is (a) [2, ∞) (b) $(-\infty, 2]$ (c) $(2, \infty)$ (d) $(-\infty, 2) \cup (2, \infty)$	1

4.	What will be the domain for which the functions $f(x) = 2x^2 - 1$ and $g(x) = 1 - 3x$ are equal?	1
	(a) {-2, 1}	
	(b) $\{1/2, -2\}$	
	(c) [2, 12]	
	(d) (-1, 2)	
5.	If $[x]^2 - 5$ $[x] + 6 = 0$, where [1, 1] denotes the greatest integer	1
	function, then	
	(a) $x \in [3, 4]$	
	(b) $x \in (2, 3]$	
	(c) x ∈ [2, 3]	
	(d) $x \in [2, 4)$	
6.	If $f(x) = ax + b$, where a and b are integers, $f(-1) = -5$ and $f(3) =$	1
	3, then a and b are equal to	
	(a) $a = -3$, $b = -1$	
	(b) $a = 2, b = -3$	
	(c) $a = 0$, $b = 2$	
	(d) $a = 2, b = 3$	
7.	The domain of the function $f(x) = x/(x^2 + 3x + 2)$ is	1
	(a) [-2, -1]	
	(b) $R - \{1, 2\}$	
	(c) $R - \{-1, -2\}$	
	(d) R - {2}	

8.	The range of $f(x) = \sqrt{(25 - x^2)}$ is	1
	(a) (0, 5)	
	(b) [0, 5]	
	(c) $(-5, 5)$	
	(d) [1, 5]	
9.	The domain and range of the real function f defined by $f(x) = (4 -$	1
	x)/(x - 4) is given by	
	(a) Domain = R, Range = $\{-1, 1\}$	
	(b) Domain = $R - \{1\}$, Range = R	
	(c) Domain = $R - \{4\}$, Range = $\{-1\}$	
	(d) Domain = $R - \{-4\}$, Range = $\{-1, 1\}$	
10.	The domain and range of the function f given by $f(x) = 2 - x - 5 $ is	1
	(a) Domain = R+ , Range = (− ∞, 1]	
	(b) Domain = R. Range = $(-\infty, 2]$	
	(c) Domain = R, Range = $(-\infty, 2)$	
	(d) Domain = R+, Range = $(-\infty, 2]$	
11.	Let $R = \{(x, y) : x, y \in z, x^2 + y^2 \le 4\}$ is a relation in z, then domain of R is:	1
	a) {0, 1, 2}	
	b) {0, -1, -2}	
	c) {-2, -1, 0, 1, 2} d) None of these	
12.	In the set R of real numbers, two relations are:	1
	$R1 = \{(x, y) : x, y \in R \text{ and } x^2 + y^2 \le 25 \}$	
	$R1 = \{(x, y) : x, y \in R \text{ and } y \ge \frac{1}{9}x^2 \}$	
	a) [-3,3], [0,5]	
	c) [-3,3], [-3,5]	
	d) [3,4], [0,5]	

13.	What will be the output of $\sqrt{-1}$ if the function in the machine is $f(x) = x^2$ Image: Function machine	1
	inputs	
	Machine outputs	
	b) 0	
	c) -1 d) 1	
14.	Let R be a relation from a set A to a set B, then	1
	Kaushalya	
	Ram Sumitra	
	Bharat Urmila Shatrughan Mandvi	
	Shrutkirti	
	a) $R = A \cup B$ b) $P = A \cap B$	
	c) $R \subseteq A \times B$	
15.	d) $R \subseteq B \times A$ If $f(x + \frac{1}{2}) = x^2 + \frac{1}{2}$ then $f(x) = 2$	1
	$\prod_{x \to x} \left(x + \frac{1}{x} \right) - x + \frac{1}{x^2}, \text{ then } f(x) = :$	
	a) x^2 b) $x^2 - 1$	
	c) $x^2 - 2$	
16.	d) $x^2 + 2$ If $[x]^2 - 5[x] + 6 = 0$ where [] denotes the greatest integer function:	1
	a) $x \in [3,4]$ b) $x \in (2,3]$	
	c) $x \in [3,2]$ d) $x \in [2,4)$	
17.	Let $f(x) = x$, $g(x) = \frac{1}{x}$ and $h(x) = f(x)$. $g(x)$, then $h(x) = 1$ for:	1
	a) $r \in R$	
	b) $x \in Q$	
	c) $x \in R - Q$ d) $x \in R, x \neq 0$	
18.	The range of the function $f(x) = \frac{x+2}{ x+2 }, x \neq -2$ is:	1
	a) {-1, 1}	
	b) {-1, 0, 1}	
	C) {1}	

	d) (0,∞)	
19.	Assertion(A) : If $(x + y, 3) = (5, x - y)$ then $x = 4$ and $y = 1$	1
	Reason(R) : Two ordered pairs are equal if and only if their corresponding elements are	
	equal	
	a) Both A and R are true and R is the correct explanation of A	
	b) Both A and R is true but R is not the correct explanation of A	
	c) A is true but R is false	
	d) A is false but R is true	
20.	The figure shows a relationship between the set P and Q. Which of the following is true? P 3 6 7 Fig.	1
	a) Domain of <i>R</i> is $\{5,6,7\}$ b) Range of <i>R</i> is $\{3,4,5\}$ c) In roster form $R = \{(5,3), (6,4), (7,5)\}$ d) All of these	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	с	1
2.	d	1
3.	а	1
4.	b	1
5.	d	1
6.	b	1
7.	с	1
8.	b	1
9.	с	1
10.	b	1
11.	С	1
12.	Α	1
13.	С	1
14.	С	1
15.	С	1
16.	D	1
17.	D	1
18.	Α	1
19.	Α	1
20.	d	1