CHAPTER-10 STRAIGHT LINES 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Two lines are said to be parallel if the difference of their slope is	1
	a)-1 b) 1 c) 0 d) None	
2.	If A(6, 4) and B(2, 12) are the two points, then the slope of a line perpendicular to line AB is	1
	a)-2 b)2 d) ½ d)-1/2	
3.	Find the equation of lines passing through (1,2) and making angle 30° with Y-axis.	1
4.	Calculate the slope of a line, that passes through the origin, and the mid-point of the	1
	segment joining the points P (0, -4) and B (8, 0).	
5.	The locus of a point, whose abscissa and ordinate are always equal is	1
	(a) $x + y + 1 = 0$ (b) $x - y = 0$ (c) $x + y = 1$ (d) none of these.	
6.	Two lines $a1x + b1y + c1 = 0$ and $a2x + b2y + c2 = 0$ are coincedent if	1
	(a) $a1/a2 = b1/b2 \neq c1/c2$	
	(b) a1/a2 ≠ b1/b2 = c1/c2	
	(c) a1/a2 ≠ b1/b2 ≠ c1/c2	
	(d) $a1/a2 = b1/b2 = c1/c2$	
7.	What can be said regarding a line if its slope is negative?	1
	a. θ is an acute angle	
	b. θ is an obtuse angle	
	c. Either the line is x-axis or it is parallel to the x-axis.	
	d. None of these	
8.	Find the equation of line passing through point (0, 0) having slope m is	1
9.	The perpendicular distance of a line 4X - 3Y + 5 = 0 from the point (2, 1) is a) 7/5 b) 9/	1
	4 c) 2 d) 1	
10.	The Fahrenheit temperature F and absolute temperature K satisfy a linear equation. Given	1
	that K = 273 when F = 32 and that K = 373 when F = 212.Express find the value of F, when K	
	= 0.	
11.	A line passes through the point (2, 2) and is perpendicular to the line $3x + y = 3$. Its y	1
	intercept is	
	(a) $\frac{1}{3}$ (b) 5 (c) $\frac{3}{4}$ (c) $\frac{4}{3}$	
12.	The area of a triangle whose vertices are (3, -2), (5, 6) and (-2, -5) is	1
	a) 15 sq. units b) 16 sq. units c) 17 sq. units d) 18	
	sq. units	
40		
13.	The figure form by the lines as \pm by \pm c = 0 is	1
	a) a rectangle b) a square	
14	The line segment joining the points (-3, -4) and (1 - 2) is divided by v-axis in the ratio	1
1	a) 1: 3 b) 2: 3	-
	c) 3: 1 d) 3: 2	

15.	The points which divide the join of (1, 2) and (3, 4) externally in the ratio 1: 1	1
	a) lies in the 3rd quadrant	
	b) lies in the 2nd quadrant	
	c)lies in the 1st quadrant	
	d) cannot be found	
16.	Area of the triangle formed by the points ((a + 3) (a + 4),	1
	(a + 3)), ((a + 2) (a + 3), (a + 2)) and ((a + 1) (a + 2), (a + 1)) is	
	a) $25a^2$ b) $5a^2$	
	c) $24a^2$ d) none of these	
17.	If the point (5, 2) bisects the intercept of a line between the axes, then its equation is	1
	a) $5x + 2y = 20$ b) $2x + 5y = 20$	
	c) $5x - 2y = 20$ d) $2x - 5y = 20$	
18.	The angle between the lines $2x - y + 3 = 0$ and $x + 2y + 3 = 0$ is	1
	a) 90° b) 60° c) 45° d) 30°	
19.	The line segment joining the points $(1, 2)$ and $(-2, 1)$ is divided by the line $3x + 4y = 7$ in the	1
	ratio	
	a) 3: 4 b) 4: 3	
	(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	
20.	The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (-2, 6). The third	1
	vertex is	_
	a) $(0,0)$ b) $(4,7)$	
	(3, (3, 3)) $(3, 3, 7)$ $(3, 7)$ $(3, 7)$	
21	Slope of a line which cuts off intercents of equal lengths on the axes is	1
	(a) -1	-
	(b) 0	
	(c) 2	
	$(d) \sqrt{3}$	
22	v-intercept of the line $4x - 3y + 15 = 0$ is	1
		-
	(a) –15/4	
	(b) 15/4	
	(c) = 5	
	(d) 5	
23.	The equation of the line passing through the point (2, 3) with slope 2 is	1
	(a) $2x + y - 1 = 0$	
	(b) $2x - y + 1 = 0$	
	(c) $2x - y - 1 = 0$	
	(d) $2x + y + 1 = 0$	
24.	The equation of the line which cuts off equal and positive intercepts from the axes and	1
	passes through the point (α , β) is	
	(a) $x + y = \alpha + \beta$	
	(b) $x + y = \alpha$	
	(c) $x + y = \beta$	
	(d) None of these	
25.	Two lines are perpendicular if the product of their slopes is	1
	(a) 0	

	(b) 1	
	(c) -1	
	(d) None of these	
26.	The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes	1
	through the point (1, 2). The equation of the line is	
	(a) $2x + y = 4$	
	(b) $2x + y + 4 = 0$	
	(c) $2x - y = 4$	
	(d) $2x - y + 4 = 0$	
27.	What can be said regarding if a line if its slope is zero	1
	(a) θ is an acute angle	
	(b) θ is an obtuse angle	
	(c) Either the line is x-axis or it is parallel to the x-axis.	
	(d) None of these	
28.	The distance between the two parallel lines $2x + y - 5 = 0$ and $2x + y + 10 = 0$ is	1
	(a) √5	
	(b) 3v5	
	(c) 2√5	
	(d) 4√5	
20	The equation of the line passing through the point (1.2) and perpendicular to the line $x + y + z$	1
29.	The equation of the line passing through the point $(1,2)$ and perpendicular to the line $x + y + 1 - 0$ is	1
	1 - 0.13	
	(a) $y = x + 1 = 0$ (b) $y = x - 1 = 0$	
	(5) y = x + 2 = 0	
	(c) y - x + 2 = 0 (d) y - x - 2 = 0	
30	The inclination of the line $x = y + 3 = 0$ with the positive direction of x-axis is	1
30.	$(a) 45^{\circ}$	1
	(a) 45 (b) 135°	
	$(5) = 45^{\circ}$	
	$(d) - 135^{\circ}$	
31.	If the straight lines ax-2y=1 and 6x-4y=b are identical, then	1
	(a) a=3, b=2 (b) a= -3, b=2 (c) a=3, b= -2 (d) a= -3, b= -2	
32.	The equation of a line which makes an angle of 45 ⁰	1
	With x-axis and cuts the y-axis at (0, 3) is	
	(a) x=3 (b) y=3 (c) y=x+3 (d) None of these	
33.	The magnitude of the angle that the line $\sqrt{3}x + y - 1 = 0$ makes with the positive direction	1
	of x-axis is	
	(a) 150° (b) 30° (c) 60° (d) 120°	
34.	Equation of the straight line which passes through thr point (3,2) and parallel to x-axis is	1
	(a) x=3 (b) x+3=0 (c) y-2=0 (d) y+2=0	
35.	The area of the triangle made by the straight line 2x+3y-12=0 with the co-ordinate axes is	1
	(a) 12 sq.units (b) 16 sq.units (c) 8 sq.units (d) 6 sq.units	
36.	Find the value of K so that the line $2x+ky-9=0$ may be parallel to $3x-4y+7=0$.	1
37.	What is the equation of a line whose perpendicular distance from the origin is 5 units and	1

	angle between the positive direction of the x-axis and the perpendicular is 30 ⁰ .	
38.	The foot of the perpendicular drawn from origin on the line x+y=2 is	1
	(a) (2,-1) (b) (-2, 1) (c) (1, 1) (d) (1, 2)	
39.	The angle between the lines y=x and y= - x is	1
	(a) $\frac{\pi}{4}$ (b) $\frac{2\pi}{2}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$	
40.	P(a, b) is the midpoint of a line segment between axes. Then the equation of the line is	1
	(a) $\frac{x}{2} + \frac{y}{2} - 1$ (b) $\frac{x}{2} + \frac{y}{2} - 1$ (c) $\frac{x}{2} + \frac{y}{2} - 2$ (d) $\frac{x}{2} + \frac{y}{2} - 2$	-
41	$(a)_{c} + \frac{1}{d} - 1$ $(b)_{a} + \frac{1}{b} - 1$ $(c)_{a} + \frac{1}{b} - 2$ $(a)_{c} + \frac{1}{d} - 2$	1
41.	1) which one of the following is the hearest point on the line $3x-4y=25$ form the origin?	L
/2	(a)(-1,-7) (b)(3,-4)(c)(-3,-6)(d)(3,4) Let $A(1,k)$ B(1,1) and C(2,1) be the vertices of the right angled triangle with AC as its	1
42.	hypotenuse. If the area of the triangle os 1 squnit, then the set of values which 'k' can take	1
	is given by	
	$(a) \{-1, 3\} (b) \{-3, -2\} (c) \{1, 3\} (d) \{0, 2\}$	
43.	ABC is an isosceles triangle. If the coordinate of the base are B(1,3) and C(-2,7), the	1
	coordinate of the vertex A can be	
	(a) (1,6) (b)(-1/2, 5) (c) (5/6,6) (d) None of these.	
44.	Slope of non-vertical line passing through the points (x_1,y_2) and (x_2,y_2) is given by:	1
	(a) $m = \frac{y^2 - y^1}{x^2 - y^2}$ (b) $m = \frac{x^2 - x^1}{x^2 - x^2}$ (c) $m = \frac{y^2 + y^1}{x^2 - y^2}$ (d) $m = \frac{y^2 - y^1}{x^2 - y^2}$	
45	x_2-x_1 y_2-y_1 x_2+x_1 x_2+x_1 If a line with slope m makes x-intercents d, then the equation of line is	1
15.	(a) $y=m(d-x)$ (b) $y=m(x-d)$ (c) $y=m(d+x)$ (d) $y=mx+d$	-
46.	The inclination of the line $x-y+3=0$ with the positive direction of x axis is .	1
	(a) 45° (b) 135° (c) -45° (d) -135°	
47.	A line passes through P(1,2) such that its intercept between the axes is bisected at P. The	1
	equation of the line is ;	
	(a) x+2y=5 (b) x-y+1=0 (c) x+y-3=0 (d) 2x+y-4=0	
48.	Line through the points (-2,6) and (4,8) is perpendicular to the line through the points (8,12)	1
	and (x,24). find the values of x.	
	(a) 2 (b) 3 (c) 4 (d) 5	
49.	The relation between a, b, a' and b' such that the two lines $ax + by = c$ and $a'x + b'y = c'$ are	1
	perpendicular is	
	(a) = aa + bb = 0	
	(c)ab+ab=0 (d)ab-a'b'=0	
50	If the points (x,y) (1,2) and collinear (-3,4) are collinear, then	1
50.	(a) $x+2y-5=0$	-
	(b) $x+y-1=0$	
	(c) $2x+y-4=0$	
	(d) 2x-y+10=0	
51.	Slope of a line which cuts off intercepts of equal lengths on the axes is	1
	a) -1 b) 0 c) 1 d) 2	
52.	The value of y so that the line through (3,y) and (2,7) is parallel to the line through (-1.4)	1
	,	
	מות (ט,ס) וג:	

	a) 8	
	b) 9	
	c) -9	
	d) -8	
53.	Equation of the line parallel to x-7y+5=0 and having x- intercept 3	1
	a) x-7y +3=0.	
	b) 3x-7y -3=0.	
	c) x-7y -5=0	
	d) x-7y -3=0.	
54.	Find the angle between the lines y- $\sqrt{3} \times \sqrt{5} = 0$ and $\sqrt{3} \times \sqrt{3} \times \sqrt{6} = 0$.	1
	(A) 60 (B) 120 (C) 150 (D) none of these	
55.	The slope of the line 8x- 4y+5 =0 is:	1
	(A) 1 (B) 2 (C) -1 (D) -2	
56.	The equation of the line which is parallel to y axis and passing through the point (2, 4) is	1
	The equation of the line which is parallel to y-axis and passing through the point (3,-4) is	
	a) x=-3 b) y=3 c) x= 3 d) y=-3	
57.	The x- intercept of the line 5x -4y-5=0 is	1
	a) 5 b)1 c)-1 d)4	
58.	Find the equation of the line intersecting x-axis at a distance of 3 units to the left of the	1
	origin with slope -2.	
	a) 2x+y+6=0	
	b) 2x – y +6 =0	
	c) $2x + y - 6 = 0$	
	d) X+ y+ 3 =0	
59.	Find the equation of the right bisector of the line segment joining the points (3,4) and (-	1
L		1

	1,2).	
	(A) $2x - y - 5 = 0$ (B) $2x + y - 5 = 0$ (C) $x + y - 5 = 0$ (D) $2x + 3y - 5 = 0$	
60.	Assertion (A). The slope of a line passing through two points (-5, 2) and (3,-2) is $-1/2$	1
	Reason (R). The slope of a line passing through two given points (x1, y1) and (x2, y2) is	
	(<i>x</i> 2- <i>x</i> 1)/(<i>y</i> 2- <i>y</i> 1)	
	a) Both A and R are true and Ris the correct explanation of A.	
	b) Both Aand R are true but R is not correct explanation of A.	
	c) A is true but R is false	
	d) A is false but R is true.	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	0	1
2.	d) ½	1
3.	Given that line passing through (1, 2) making an angle 30° with y – axis. Angle made by the line with x – axis is (90° - 30°) = 60° Slope of the line, m = tan 60° = v3 So, the equation of the line passing through the point (x1, y1) and having slope 'm' is y – y1 = m(x – x1). Here, (x1, y1) = (1, 2) and m = v3 \Rightarrow y – 2 = v3(x – 1) \Rightarrow y – 2 = v3x - v3 \Rightarrow v3x – y - v3 + 2 = 0 y y y y y y y y	1
4.	Given that, The coordinates of the mid-point of the line segment joining the points P (0, -4) and B (8, 0) are: [(0+8)/2, (-4+0)/2] = (4, -2) It is known that the slope (m) of a non-vertical line passing through the points (x1, y1) and (x2, y2) is given by the formula m = (y2 -y1) / ((x2 -x1), where (x2 is not equal to x1) Therefore, the slope of the line passing through the points (0, 0,) and (4, -2) is m= (-2-0)/(4-0) m= -2/4 m= -½ Hence, the required slope of the line is -1/2	1
5.	Let, the point P is (h,k) Given:Abscissa=Ordinate ⇒h=k h-k=0 ⇒x-y=0 is the locus of a point whose abscissa and ordinate are always equal.	1
6.	(d) a1/a2 = b1/b2 = c1/c2	1

7.	b. θ is an obtuse angle	1
8.	Y= mX	1
9.	Correct option is B)	1
	The distance d between the line AX+BY+C=0 and point (X1 , Y1) is given by	
	$\mathbf{d} = \frac{AX1 + BY1 + C}{m} $	
	$\sqrt{A^2 + B^2}$	
	Therefore, Required distance= $\frac{422(-3)(1+3)}{\sqrt{2^2}+1^2}$ = 10/5 = 2	
	Option B is correct.	
10.	F = -459.4	1
11.	D	1
12.	С	1
13.	C	1
14.	C	1
15.	D	1
16.	D	1
17.	В	1
18.	A	1
19.	D	1
20.	B	1
21.	(a) - 1	1
22.	(d) 5	1
23.	(c) $2x - y - 1 = 0$	1
24.	(a) $x + y = \alpha + \beta$	1
25.	(c) -1	1
26.	(a) $2x + y = 4$	1
27.	(c) Either the line is x-axis or it is parallel to the x-axis	1
28.	(b) $3\sqrt{5}$	1
29.	(b) $y - x - 1 = 0$	1
30.	(a) 45°	1
31.	a.	1
32.	с	1
33.	d	1
34.	c	1
35.	a	1
36.	Given, The Equations of two parallel lines are $2x \pm ky = 0 = 0$ and $3x = 4y \pm 7 = 0$	
	Slope of the line is given by $m = \frac{-(co \ efficient \ of \ X)}{-(co \ efficient \ of \ X)}$	
	Stope of the fine is given by $m = \frac{1}{co \ efficient \ of \ Y}$	
	According to the question, Slope of 1st line – slope of 2nd line	
	-2 -3 -8	
	$\frac{k}{k} = \frac{k}{-4} = \frac{k}{3}$	
37.	Given,	1
	Perpendicular distance of the line from the origin is 5 units.	

	Angle between the positive direction of the x-axis and the perpendicular is 30° .	
	Hence,	
	$p=5,\alpha=30^{\circ}$	
	Required equation is given by $x \cos \alpha + y \sin \alpha = p$.	
	$x\cos 30 + y\sin 30 = 3$	
38	$\sqrt{5x + y} - 10 = 0.$	1
30.	d	1
40.	6 1 v avis	1
	y-anis	
	B(0, d)	
	2 P(a, b)	
	A(c, 0)	
	-2 0 2 4 6 8 x-axis ¹⁰	
	-2	
	Cincr	
	Mid-point of a line segment between axes P(a b)	
	ATQ,	
	Let P be the mid-point of A(c,0) and B(0,d)	
	Required equation is $\frac{x}{a} + \frac{y}{b} = 1$; i.e., $\frac{x}{c} + \frac{y}{d} = 1$ (i)	
	Where,	
	x-intercept = a	
	y-intercept = b C = 1 $C = 1$ $C = 1$	
	Coordinate of $P = (\frac{1}{2}, \frac{1}{2})$ ["mid-point]	
	$\therefore(\mathbf{a},\mathbf{b}) = \left(\frac{c}{2},\frac{a}{2}\right)$	
	c=2a	
	Dut the value of c and d in equation (i)	
	1 ut the value of c and u in equation (1)	
	$\frac{x}{y} + \frac{y}{y} = 1 = 2$	
	2a $2b$ a b	
	Ans: Option-(c)	
41.	(b) (3,-4)	1
42.	(a)	1
43.	(c)	1
44.	(a)	1
45.	(b)	1
46.	(a)	1
47.	(d)	1
48.	(C)	1
49.	(b)	1
50.	(a)	1
51.	a	1
52.	b	1

53.	d	1
54.	c	1
55.	b	1
56.	c	1
57.	b	1
58.	a	1
59.	b	1
60.	c	1