CHAPTER-8 APPLICATION OF INTEGRALS 01 MARK TYPE QUESTIONS

	UI MARK TYPE QUESTIONS	
Q. NO	QUESTION	MARK
1.	The area of the region bounded by $y = \cos x$ between $x=0$ and $x=\pi$ is	1
	a) 2sq unit	
	b) 4sq unit	
	c) 6sq unit	
	d) 1sq unit	
2.	The area of the region bounded by the parabola $y^2 = x$ and the straight line $y = x/2$ is	1
	a) 1/3 sq unit	
	b) 2/3 sq unit	
	c) 3/3 sq unit	
	d) 4/3 sq unit	
3.	The area bounded by the curve $y^2 = 4ax$ and axis between $y = -a$ and $y = a$ is	1
5.	a) A^2	1
	b) $6a^2$	
	c) $A^2/6$	
	d) $A^2/2$	
4.	The area of the region bounded by the curve $x=2y+3$ and the line $y=1$ and $y=-1$ is	1
	a) 2 sq unit	
	b) 4 sq unit	
	c) 6 sq unit	
	d) 8 sq unit	
5.	The area bounded by the curve $y=x^2 - 1$ and the straight line $x + y=3$	1
	$\sqrt{17}$	
	a) $\frac{\sqrt{17}}{7}$ sq unit	
	b) $\frac{7\sqrt{17}}{6}$ sq unit	
	6	
	17√17 .	
	c) $\frac{17\sqrt{17}}{6}$ sq unit	
	d) 4 sq unit	
6.	The area of the region bounded by $y = x-2 $, $x=1$ and $x=3$ and x -axis is	1
	a) 4sq unit	
	b) 3sq unit	
	c) 2sq unit	
	d) 1 sq unit	
7.	Area of the triangle whose vertices formed from the x-axis and the line $3- x $ is	1
	a) $\frac{9}{2}$ sq. unit	
	b) $\frac{3}{2}$ sq. unit	
	c) 9sq.unit	

8. Find the area of the region $\{(x, y) : x^2 \le y \le x\}$. a) $\frac{1}{3}$ sq. unit	1
a) $\frac{1}{3}$ sq. unit	
b) $\frac{1}{2}$ sq. unit	
c) $\frac{1}{6}$ sq. unit	
d) $\frac{1}{9}$ sq. unit	
9. If $y=2 \sin x + \sin 2x$ for $0 \le x \le 2\pi$ then area enclosed by the curve and the x-axis i	s 1
a) $\frac{9}{2}$ sq. unit	
b) 8sq. unit	
c) 12sq. unit d) 4sq. unit	
10. The area of the region bounded by the curves $y=x$, $x=e$ and $y=\frac{1}{x}$ and all the positive x-a	axis is 1
a) $\frac{1}{2}$ sq. unit	
b) $\frac{3}{2}$ sq. unit	
c) 1sq. unit	
d) $\frac{5}{2}$ sq. unit	
11. The area of the region bounded by the circle $x^2 + y^2 = 1$ is (a) 2π sq. units (b) π sq. units	1
(a) 2π sq. units (b) π sq. units (c) 3π sq. units (d) 4π sq. units	1
12. The area of the region bounded by the curve $y = x + 1$ and the lines $x = 2$ and $x = 3$	is
(a) $\frac{7}{2}$ sq. units (b) $\frac{9}{2}$ sq. units	1
(c) $\frac{11}{2}$ sq. units (d) $\frac{13}{2}$ sq. units	1
13. The area of the region bounded by the curve $y^2 = 4x$, y-axis and the line $y = 3$ is	
(a) 2 (b) $\frac{9}{4}$	1
(c) $\frac{9}{3}$ (d) $\frac{9}{2}$	1
14. The area bounded by $y = 2 - x^2$ and $x + y = 0$ is	
(a) $\frac{7}{2}$ (b) $\frac{9}{2}$	1
(c)9 ² (d) none of these	1
15. The area bounded by the parabola $x = 4 - y^2$ and y-axis, in square units, is	
(a) $\frac{3}{32}$ (b) $\frac{32}{3}$	1
(c) $\frac{33}{2}$ (d) $\frac{16}{3}$	1
16. Area lying between the curve $y^2 = 4x$ and $y = 2x$ is	
(a) $\frac{2}{3}$ (b) $\frac{1}{3}$	1
(c) $\frac{1}{4}$ (d) $\frac{3}{4}$	

17.	The area bounded by the parabola $y^2 = 4ax$, latus rectum and x-axis is	
17.	(a) 0 (b) $\frac{4}{3}a^2$ (c) $\frac{2}{3}a^2$ (d) $\frac{a^2}{3}$	1
18.	The area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a) πab (b) $\pi a^2 b^2$ (c) $2\pi ab$ (d) ab	1
19.	The area of the region bounded by the circle $x^2 + y^2 = a^2$ (a) $2\pi a$ (b) πa^2 (c) $2\pi a^2$ (d) None of these	1
20.	The area of the region bounded by the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$ (a) 6π (b) 36π (c) 18π (d) None of these	1
21.	The area enclosed between the curve y=x ² and y=Vx is A) % sq. unit B) ½ sq. unit C) 4 sq. unit D) 1/3 sq. unit	1
22.	The area enclosed among the curves 2x-3y=0, X axis, X=3 and X= 5 is A) 16 sq. units B) 8 sq. units	1
23.	C) 4 sd. units D) 16/3 sq. units Area bounded by the lines y=2+x, y= 2-x and x=2 is A) 3 sq. units B) 4 sq. units	1
24.	C) 8 sq. units D) 16sq. units Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$, and the lines x=0 and x=2 is A) π B) $\pi/4$	1
25.	C) π/3 D) π/2 The area of the region bounded by the curve y ² =4x, Y axis and the line y=3 is A) 2 B)9/4	1
26.	C)9/3D) 9/2The area bounded by the curves y²=4ax and its latus rectum isA) 4/3 a² sq. UnitsB) 8/3 a² sq. UnitsC) 16/3a² sq. UnitsD)None of these	1
27.	Area bounded by the curve y= sinx between the ordinates x=0 and x=π isA) 2sq. UnitsB) 4 sq. UnitsC) 3 sq. UnitsD) 1 sq. Units	1
28.	Assertion (A): The area bounded by the circle $x^2+y^2= 16$ is 16π sq. Units. Reason (R): We have $x^2+y^2= 16$, which is circle having center at (0,0) and radius 4 units.	1
	(A) Both A and R are true and R is the correct explanation of A.	

	(C) A is true but R is false.	
	(D) A is false but R is true.	
29.	Assertion (A): The area bounded by y ² =8x and x ² =8y is 64/3 sq. units. Reason (B): The area bounded by y ² =4ax and x ² =4by is 16ab/3 sq. units. The correct answer is	1
	(A) Both A and R are true and R is the correct explanation of A.	
	(B) Both A and R are true but R is not the correct explanation of A.	
	(C) A is true but R is false.(D) A is false but R is true.	
	(D) A is faise but K is true.	
30.	The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is	1
	A) 4/3(4π-√3) B) 4/3(4π+√3)	
	C) 4/3(8π-√3) D)4/3(8π+√3)	
31.	Area (in square unit) lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the line x=0, x=2 is	1
	(a) π (b) $\frac{\pi}{2}$	
	(b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$	
	(d) $\frac{\pi}{4}$	
	4	
32.	Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y=3 is (in sq unit)	1
02.	(a) 2	
	(b) 9/4 (c) 9/5	
	(d) 9/2	
33.	Area of the region bounded by the curve $y^2 = 4x$ and y = 2x is (a) $2/3$	1
	(b) 1/3	
	(c) 1/4	
24	(d) 3/4 The area enclosed between the curve $y^2 = x$ and $y = x $ is	1
34.	(a) $1/6$	
	(b) 1/3	
	(c) 2/3 (d) 1	
35.	The area enclosed between the curve $y = x$ and	1
	$y = 2x - x^2$ (in square units) is	
	(a) 1/2 (b) 1/6	
	(c) 1/3	
20	(d) 1/4	1
36.	The area enclosed between the curve $y = ax^2$ and $x = ay^2$, $(a > 0)$ is 1 square unit then the value of a is	1
	(a) $\frac{1}{\sqrt{3}}$	
	(b) $\frac{1}{2}$	
	(c) $\frac{1}{1}$	
	(d) $\frac{1}{3}$	
37.	The area (in square units) bounded by the curves $y = \sqrt{x}$, $2y - x + 3 = 0$, x- axis and lying in the first	1
57.	quadrant is	–

	(a) 9	
	(b) 36 (c) 18	
	(c) 18 (d) $a = 4$	
	(d) 27/4	
38.	The area enclosed between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is (in Square units)	1
	(a) 4/3 (b) 1/3	
	(c) 16/3	
	(d) 8/3	
20	Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line $x + y = 2$ is	1
39.	(a) $2(\pi - 2)$	T
	(b) $\pi - 2$	
	(c) $2\pi - 1$	
	(d) $(d)2(\pi+2)$	
40.	The area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to	1
	(a) $\pi^2 ab$	
	(b) πab	
	(c) $\pi a^2 b$	
	(d) πab^2	
41.	The area bounded by the parabola $y^2 = 8x$, the x-axis and the latus rectum is	1
	(a) $16/3$ (b) $23/3$ (c) $32/3$ (d) $16\sqrt{2}/3$	
42.		1
	If the area bounded by y-axis and curves $y = \cos x$ and $y = \sin x$, $0 \le x \le b$ is $(\sqrt{2} - 1)$ sq.	
	units then the value of b is	
	(a) π (b) $\pi/2$	
	(c) $\pi/4$ (d) none of these	
43.	The area bounded by the curve $y^2 = x - 4$ and the lines $y = 0$ and $y = 5$ is	1
45.	The area bounded by the curve $y = x^{-4}$ and the times $y = 0$ and $y = 5$ is	1
43.	The area bounded by the curve $y^2 - x^{-4}$ and the times $y = 0$ and $y = 5$ is	1
43.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$	1
43.	(a) 38/3 (b) 76/3 (c) 19/3 (d) 57/3	1
	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is:	
	(a) 38/3 (b) 76/3 (c) 19/3 (d) 57/3 The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units	
44.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is:(a) 1 sq. units(b) 2 sq. units(c) 4 sq. units(d) 3 2sq. units	
	(a) 38/3 (b) 76/3 (c) 19/3 (d) 57/3 The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units	1
44.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is:	1
44.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$	1
44. 45.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$	1
44.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$	1
44. 45.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is	1
44. 45.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is:(a) 1 sq. units(b) 2 sq. units(c) 4 sq. units(d) 3 2sq. unitsArea under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is:(a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is(a) $\pi/4$ (b) $1 + \pi/4$	1
44. 45. 46.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these	1 1 1 1
44. 45.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq.	1
44. 45. 46.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these	1 1 1 1
44. 45. 46.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is	1 1 1 1
44. 45. 46. 47.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2 sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these	1 1 1 1 1 1
44. 45. 46.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve	1 1 1 1
44. 45. 46. 47.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve $x = 2y + 3$, y-axis and the line $y = -1$ and $y = b$ is 6 sq. units, then the value of b is	1 1 1 1 1 1
44. 45. 46. 47.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve	1 1 1 1 1 1
44. 45. 46. 47. 48.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve x = 2y + 3, y-axis and the line $y = -1$ and $y = b$ is 6 sq. units , then the value of b is (a) $b = 0$ (b) $b = 1$ (c) $b = -1$ (d) none of these	1 1 1 1 1
44. 45. 46. 47.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve $x = 2y + 3$, y-axis and the line $y = -1$ and $y = b$ is 6 sq. units, then the value of b is	1 1 1 1 1 1

	(a) $a = -2$ (b) $a=2$	
	(c) a=1 (d) none of these	
50.	If the curve $y = f(x)$ crosses x-axis into 3 times and areas A1,A2 and A3 are formed, then the area between the curve and the ordinates $x = a$ and $x = b$ is given by	1
	(a) $A1 - A2 + A3$ (c) $A1 + A2 - A3$ (b) $A1 - A2 - A3$ (d) $A1 + A2 + A3$	
51.	The area bounded by the curve $y = \sin x$, $x = 0$ and $x = \pi$ is (a) 2 sq. unit (b) 4 sq. unit (c) 3 sq. unit (d) 1 sq. unit	1
52.	Area bounded by the curve $y = f(x)$, x-axis and the lines x=a and x = b is: (a) $\int_{a}^{b} x dy$ (b) $\int_{a}^{b} y dx$ (c) $\int_{a}^{b} x^{2} dy$ (d) $\int_{a}^{b} y^{2} dx$	1
53.	The area bounded by the curve $y^2 = 4ax$ and its latus rectum is (a) $\frac{4}{3}a^2$ sq. units (b) $\frac{8}{3}a^2$ sq. units (c) $\frac{16}{2}a^2$ sq. units (d) None of these	1
54.	The area enclosed between y = x, x = 1, x = 3 and x-axis is (a) 2 sq. units (b) 9/2 sq. units (c) 4 sq. units (d) None of these	1
55.	The area between the curve $y = x^2$, x-axis and the lines $x = 0$ and $x = 2$ is (a) $\frac{2}{3}$ sq unit (b) $\frac{6}{3}$ sq unit (c) $\frac{8}{3}$ sq unit (d) $\frac{4}{3}$ sq unit	1
56.	The area of the region bounded by the curve $y^2 = x$ and the lines $x = 1$ and $x = 4$ is (in sq. units): (a) $\frac{15}{2}$ (b) $\frac{14}{3}$ (c) 7 (d) None of these	1
57.	The area enclosed between x-axis and the curve $y = \cos x$ when $0 \le x \le 2\pi$ is (a) 0 sq. unit (b) 2 sq. units (c) 3 sq. units (d) 4 sq. units	1
58.	Find the area of the region bounded by the curve $y = x^2$ and the line $y = 16$ is (a) $\frac{32}{3}$ (b) $\frac{256}{3}$ (c) $\frac{64}{3}$ (d) $\frac{128}{3}$	1
59.	The area bounded by the curve y = 4 sin x, x-axis from x = 0 to x = π is equal to: (a) 1 sq unit (b) 2 sq unit (c) 4 sq unit (d) 8 sq unit	1
60.	The area bounded by the parabola $y^2 = x$ and the straight line $2y = x$ is (a) $\frac{4}{3}$ sq. units (b) 1 sq. unit (c) $\frac{2}{3}$ sq. unit (d) $\frac{1}{3}$ sq. unit	1
61.	The area of the region bounded three roads and the equation of roads is given by the curve y = x + 1 and the line x=2 and x=3 is (a) $\frac{7}{2}$ sq units (b) $\frac{9}{2}$ sq units (c) $\frac{11}{2}$ sq units (d) $\frac{13}{2}$ sq units	1
62.	Using integration, find the area of cake which is cut in the shape of the quadrant of the circle	1

	of radius 2units and center (0,0).	
	(a) 2π	
	(b) 4π	
	(c) 3 <i>π</i>	
	(d) π	
63.	The area of the region bounded by parabola $y^2 = x$ and the straight line $2y = x$ is	1
	(a) $\frac{1}{2}$ sq unit	
	(b) 2 <i>sq unit</i>	
	(c) $\frac{4}{3}$ sq unit	
	5	
	$(d) \frac{2}{3} sq unit$	1
64.	A Cable hangs in the form of parabola with its axis vertical. The cable is 10m high and 5m wide at the base	1
	wide at the base	
	(a) $y^2 = \frac{5}{8}x$	
	(b) $y^2 = -\frac{5}{7}x$	
	(b) $y^2 = -\frac{5}{8}x$ (c) $x^2 = \frac{5}{8}y$	
	(c) $x^2 = \frac{1}{8}y$	
	(d) $x^2 = -\frac{5}{8}y$	
65.	A parking lot in JNU CAMPAS has an area equals to the smaller part of the circle x^2 +	1
05.	$y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$. This area is allotted for car owners who practices car	1
	pooling. On the basis of above information, find the area used for car pooling.	
	(a) $\frac{a^2(\pi-2)}{2}$ sq units	
	(b) $\frac{a^2}{4}$ sq units	
	(c) $\frac{a^2(\pi-2)}{4}$ sq units	
	(d) $\frac{a^2(\pi-2)}{5}$ sq units	
	J	1
66.	The area bounded by the curve $y = x $, the x-axis and between $x = -2$ to $x = 0$ is	1
	(a) $4 sq units$	
	(b) $\frac{3}{2}$ sq units	
	(c) 1 sq units (d) 2 sq units	
	(d) 2 <i>sq units</i> Ram and Aman both draw parabolas. Ram draw a parabola on positive y-axis whose equation	1
67	Rum and Finian both draw parabolas. Rum draw a parabola on positive y anis whose equation	•
67.		
67.	is $y^2 = 4ax$ and Aman draw a parabola on positive x-axis whose equation is $x^2 = 4ay$ on the same xy-plane, then her teacher told them to find the area bounded by these two	
67.	is $y^2 = 4ax$ and Aman draw a parabola on positive x-axis whose equation is $x^2 = 4ay$ on	
67.	is $y^2 = 4ax$ and Aman draw a parabola onpositive x-axis whose equation is $x^2 = 4ay$ on the same xy-plane, then her teacher told them to find the area bounded by these two	
67.	is $y^2 = 4ax$ and Aman draw a parabola onpositive x-axis whose equation is $x^2 = 4ay$ on the same xy-plane, then her teacher told them to find the area bounded by these two	
67.	is $y^2 = 4ax$ and Aman draw a parabola onpositive x-axis whose equation is $x^2 = 4ay$ on the same xy-plane, then her teacher told them to find the area bounded by these two	
67.	is $y^2 = 4ax$ and Aman draw a parabola onpositive x-axis whose equation is $x^2 = 4ay$ on the same xy-plane, then her teacher told them to find the area bounded by these two parabolas.	
67.	is $y^2 = 4ax$ and Aman draw a parabola onpositive x-axis whose equation is $x^2 = 4ay$ on the same xy-plane, then her teacher told them to find the area bounded by these two parabolas.	
67.	is $y^2 = 4ax$ and Aman draw a parabola onpositive x-axis whose equation is $x^2 = 4ay$ on the same xy-plane, then her teacher told them to find the area bounded by these two parabolas.	
67.	is $y^2 = 4ax$ and Aman draw a parabola onpositive x-axis whose equation is $x^2 = 4ay$ on the same xy-plane, then her teacher told them to find the area bounded by these two parabolas.	

	(a) $\frac{8a^2}{3}$ (b) $\frac{16a^2}{3}$ (c) $\frac{32a^2}{3}$ (d) $\frac{64a^2}{3}$	
68.	Mohit draw three lines and give the equation of lines as $3x - y - 3 = 0$, $2x + y - 12$ and $x - 2y - 1 = 0$ and told his brother to find the area bounded by these lines	1
	(a) 8 sq. units (b) 9 sq. units (c) 10 sq. units (d) 11 sq. units	
69.	The area of region bounded by the line $2x + y = 8$, the Y-axis and the lines y=2 and y=4 is (a) 5 sq. units (b) 6 sq. units (c) 12 sq. units (d) 7 sq. units	1
70.	The area bonded by the parabola $y^2 = 16x$ and its latusrectum is (a) $\frac{25}{3}$ sq. units (b) $\frac{16}{3}$ sq. units (c) $\frac{64}{3}$ sq. units (d) $\frac{32}{3}$ sq. units	1

.

ANSWERS:

Q. NO	ANSWER	MARKS
1.	a) 2 sq unit	1
2.	e) 4/3 sq unit	1
3.	a) A $^{2}/_{6}$ sq unit	1
4.	b) 6 sq unit	1
5.	c) $\frac{17\sqrt{17}}{6}$ sq unit	1
	6	
6.	d) 1 sq unit	1
7.	b) 9sq. unit	1
8.	c) 9sq. unit	1
9.	c) 12 sq. unit	1
10.	b) $\frac{3}{2}$ sq. unit	1
11.	b	1
12.	a	1
13.	b	1
14.	b	1
15.	b	1
16.	b	1
17.	b	1
18.	a	1
19.	b	1
20.	a	1
21.	C	1
22.	d	1
23.	b	1
24.	a	1
25.	b	1
26.	b	1
27.	a	1
28.	а	1
29.	a	1
30.	C	1
31.	a	1
32.	b	1
33.	b	1
34.	b	1
35.	b	1
36.	a	1

37.	а	1
38.	а	1
39.	b	1
40.		1
	b Ortion	
41.	Option – c	1
42.	Option – b	1
43.	Option – b	1
44.	Option – a	1
45.	Option – d	1
46.	Option – c	1
47.	Option – a	1
48.	Option – b	1
49.	Option – a	1
50.	Option – d	1
51.	a	1
52.	с	1
53.	b	1
54.	с	1
55.	с	1
56.	b	1
57.	d	1
58.	b	1
59.	d	1
60.	a	1
61.	(a) $\frac{7}{2}$ sq units	1
62.	(d) π	1
63.	$(c)\frac{4}{3}$ sq unit	1
64.	$(c)x^2 = \frac{5}{8}y$	1
65.	(c) $\frac{a^2(\pi-2)}{4}$ sq units	1
66.	(d) 2 sq units	1
67.	(d) 2 sq units (b) $\frac{16a^2}{3}$	1
68.	(d) 11 sq. units	1
69.	(a) 5 <i>sq.units</i>	1
70.	(a) 5 sq. units (c) $\frac{64}{3} \text{ sq. units}$	1
L		