CHAPTER-9 DIFFERENTIAL EQUATIONS 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Solution of differential equation $xdy - ydx = Q$ represents:	1
	(a) a rectangular hyperbola	
	(b) parabola whose vertex is at the origin	
	(c) straight line passing through the origin	
	(d) a circle whose centre is at the origin	
2.	Given the differential equation $\frac{dy}{dx} = \frac{6x^2}{2y+cosy}$ $y(1) = \pi$	1
	(a) Solution is $y^2 - siny = -2x^3 + c$	
	(b) Solution of $y^2 + siny = 2x^3 + c$	
	(c) $C = \pi^2 + 2$ (d) $C = \pi^2 - 2$	
	The differential equation of all perchales where axis of symmetry is along the axis of the y	1
5.	axis is of order	1
	(a) 3	
	(b) 1	
	(c) 2 (d) none of these	
4.	The degree of the equation satisfying the relation	1
	$\sqrt{1+x^2} + \sqrt{1+y^2} = \lambda x (\sqrt{1+y^2} - y(\sqrt{1+x^2}))$	
	(a) 1 (b) 2	
	(0) 2 (C) 3	
	(d)4	
5.	The order and degree of the differential equation $\left(\frac{d^2y}{2}\right) + \left(\frac{dy}{2}\right)^{\frac{1}{4}} + x^{\frac{1}{5}} = 0$	1
	Respectively are	
	(a) 2 and not defined	
	(b) 2 and 2	
	(c) $2 \text{ and } 3$ (d) $3 \text{ and } 3$	
6.	Integrating factor of the differential equation $\frac{dy}{dx} + ytanx - secx = 0$ is	1
	(a) cosx	
	(b) $secx$	
	(c) e^{secx}	
	The number of arbitrary constants in the next cular solution of a differential event in fail in the	1
/.	order is:	
	(a) 3	
	(b) 2	

	(c) 1 (d) 0	
8.	The differential equation satisfied by $y = \frac{A}{x} + B$ is (A, B are parameters) (a) $x^2y_1 = y$ (b) $xy_1 + 2y_2 = 0$ (c) $xy_2 + 2y_1 = 0$ (d) none	1
9.	The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is: (a)Ellipse (b)Parabola (C) Circle (d) Rectangular hyperbola	1
10.	The order of differential equations of all circles of given radius 4 (a) 3 (b) 2 (c) 1 (d) 0	1
11.	The differentilequation y log y dx – xdy =0 is (i) variable separable differential equation (ii) homogeneous differential equation (iii)First order linear differential equation (iv) none of these	1
12.	The integrating factor of the differential equation $x\frac{dy}{dx} + y = x^3$ is (i) x (ii) logx (iii) i/x (iv0 none of these	1
13.	The degree of the differential equation $x^2 + (\frac{dy}{dx})^2 = 5$ i (i) 2 (ii) 3 iii) 1 (iv)none of these	1
14.	A solution of the differential equation $(\frac{dy}{dx})^2 - x\frac{dy}{dx} + y = 0$ is (i)y=2 (ii) y=2x (iii) y=2x-4 (iv)none of these	1
15.	The integrating factor of $\frac{dy}{dx}$ - y=1 is (i) e ^x (ii) e ^{-x} (iii) -e ^{-x} (iv) none of these	1
16.	The sum of the order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3$ =siny is (i)1 (ii)2 (iii) 3 (iv) 4	1
17.	What is the product of the order and degree of the differential equation $\frac{d^2y}{dx^2}siny + \left(\frac{dy}{dx}\right)^3 \cos y = \sqrt{y}$	1

	(i)3 (ii) 2 (iii) 6 (iv) not defined	
18.	The solution of the differential equation $2x\frac{dy}{dx}$ y = 3 represents a family of (i) Straight lines (ii) circles (iii) parabolas (iv) ellipses	1
19.	The general solution of the differential equation $xdy -(1+x^2) dx=x$ is (i)y= 2x+ x ³ /3 + C (ii) y= 2logx+ x ³ /2 + C (iii)y= 2x+ x ² /3 + C y= x ² /2 + C (iv) none of these	1
20.	The solution of $\frac{dy}{dx}$, $y = 1$, $y(0) = 1$ is given by (i)xy=-e(ii)xy=-e ^{-x} (iii)xy=-1 (iv) y=2e ^x - 1	1
21.	The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$, is a)3 b)2 c)1 d)not defined	1
22.	The degree of the differential equation $x=1 + \frac{dy}{dx} + \frac{1}{2!} \left(\frac{dy}{dx}\right)^2 + \frac{1}{3!} \left(\frac{dy}{dx}\right)^3 + \dots, \text{is}$ a)3 b)1	1
	c)not defined d)none of these	
23.	The order of the differential equation $\left(\frac{d^2r}{dt^2}\right)^2 + 3\left(\frac{dr}{dt}\right)^3 + 4 = 0$ is a)2 b)1 c)3 d)4	1
24.	The differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} = \left(y + \frac{dy}{dx}\right)^{\frac{1}{2}}$ is of a)second order ,fourth degree b)first order, fourth degree c)second order, third degree d)second order ,second degree	1
25.	The number of arbitrary constants in the general solution of a differential equation of fourth order area)0b)2c)3d)4	1
26.	The order of the differential equation whose general solution is given by $y=(c_1+c_2)\sin(x+c_3) - c_4e^{x+c_5}$ is a)5 b)4 c)3 d)2	1
27.	The solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$ is	1

	a) $\tan^{-1} x + \cot^{-1} x = C$ b) $\sin^{-1} x + \sin^{-1} y = C$ c) $\sec^{-1} x + \csc^{-1} x = C$ d) none of these	
28.	The number of arbitrary constants in the particular solution of a differential equation of third order are	1
	a)3 b)2 c)1 d)0	
29.	Which of the following is a homogeneous differential equation? (A) $(4x+6y+5) dy-(3y+2x+4) dx=0$ (B) $(xy)dx-(x^3+y^3) dy = 0$ (C) $(x^3+2y^2) dx + 2xy dy = 0$ (D) $y^2dx+(x^2-xy-y^2)dy = 0$	1
30.	The Integrating Factor of the differential equation $x \frac{dy}{dx} - y = 2x^2$ is (A) e^{-x} (B) e^{-y} (C) $1/x$ (D) x.	1
31.	The sum of order and degree of the differential equation $x^3 \left(\frac{d^2 y}{dx^2}\right)^2 + x \left(\frac{dy}{dx}\right)^4 = 0$ is (a) 6 (b) 2 (c) 4 (d) 3	1
32.	The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/4} + x^{1/5} = 0$ respectively are (a) 2 and 4 (b) 2 and 2 (c) 2 and 3 (d) 3 and 3	1
33.	Which of the following is a second order differential equation? (a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$	1
34.	The numbers of arbitrary constant in the general solution of a differential equation of fourth order are: (a) 0 (b) 2 (c) 3 (d) 4	1
35.	The numbers of arbitrary constant in the particular solution of a differential equation of second order are: (a) 0 (b) 2 (c) 3 (d) 4	1
36.	A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree : (a) 0 (b) 1 (c) 2 (d) not defined	1
37.	The integrating factor of differential equation $\cos x \frac{dy}{dx} + ysinx = 1$ is (a) $\cos x$ (b) $\tan x$ (c) $\sec x$ (d) $\sin x$	1
38.	The solution of differential equation x dy-y dx=0 represents(a) a rectangular hyperbola(b) parabola whose vertex is at origin(c) straightline passing through origin(d) a circle whose centre is at origin	1
39.	A function F(x,y) is a homogeneous function of degree n, if (a) $f(x,y) = x^n f\left(\frac{y}{x}\right)$ (b) $f(x,y) = y^n g\left(\frac{x}{y}\right)$	1

	(c) Both a and b (d) $f(x, y) = x^{-n} f\left(\frac{y}{x}\right)$	
40.	For what value of n is the following a homogeneous differential equation : $\frac{dy}{dx} = \frac{x^3 - y^n}{x^2 y + x y^2}$	1
	(a) 4 (b) 3 (c) 2 (d) 1	
41.	The order and degree of the differential equation $x^2 \frac{d^2 y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^4$ is A. 1, 1 B. 2, 4 C. 2, 1 1, 4	1
42.	The order and degree of the differential equation $x^3 \left(\frac{d^2y}{dx^2}\right)^2 + x \left(\frac{dy}{dx}\right)^4 = 0$ is A. 2, 1 B. 2, 2 C. 4, 2 2, 2	1
43.	The degree of the differential equation $\frac{d^2y}{dx^2} + x \left(\frac{dy}{dx}\right)^2 = 2x^2 \log\left(\frac{d^2y}{dx^2}\right)$ is A. 2 B. 1 C. Not Defined 3	1
44.	The order and degree of the differential equation $\left(\frac{d^4y}{dx^4}\right)^2 = \left\{x + \left(\frac{dy}{dx}\right)^2\right\}^3$ is A. 2, 2 B. 2, 4 C. 2, 6 4, 2	1
45.	The sum of the degree and the order of the following differential equation: $\frac{d}{dx} \left[\left(\frac{d^2 y}{dx^2} \right)^4 \right] = 0$ is A. 6 B. 3 C. 5 4	1
46.	The sum of the order and degree of the following differential equation: $y = x \left(\frac{dy}{dx}\right)^3 + \frac{d^2y}{dx^2}$ is A. 5 B. 4 C. 3	1
47.	The integrating factor of the differential equation $x \frac{dy}{dx} - 2y = 2x^2$ is A. $\frac{1}{x}$ B. $\frac{1}{x^2}$ C. lnx e^x	1
48.	The integrating factor of the differential equation $(y - x)dy = (1 + y^2)dx$ is A. $e^{\tan^{-1}x}$ B. $e^{\tan^{-1}y}$ C. $\tan^{-1}x$ $\tan^{-1}y$	1
49.	The number of arbitrary constants in the general solution of a fourth order differential	1

	equation is	
	A. 0	
	$\begin{array}{c} \mathbf{B}, \ 2\\ \mathbf{C}, \ 3 \end{array}$	
	4	
50.	The number of arbitrary constants in the particular solution of a fourth order differential	1
	equation is	
	A. 0	
	$\begin{array}{c} B. \ 2 \\ C \ 3 \end{array}$	
	4	
51.	Determine the order of differential equation	1
	d^4y	
	$\frac{1}{dx^4} + \tan(y'') = 5$	
	(A)4 (B) 2 (C) 1 (D) Not Defined	
52.		1
	Check which of the given function is a solution of the following differential	
	equation	
	$v^{\prime\prime} - v^{\prime} = 0$	
	(A) $y = \sqrt{1 + x^2}$	
	(R) $y = e^x + 1$	
	(0)y = c + 1 (c) $xy = \log y + c$	
	$(C)xy = \log y + C$	
	$(D)y = \cos y = x$	
53.	The number of arbitrary constants in the general solution of a differential	1
	equation of third order are	
	0 (B) 2 (C) 4 (D) 3	
54.	Find the degree of the following differential equation	1
	$\left(\frac{d^2y}{d^2}\right)^2$, $\left(\frac{dy}{dy}\right) = 0$	
	$\left(\frac{dx^2}{dx^2}\right) + \cos\left(\frac{dx}{dx}\right) = 0$	
	(A) 2 (B) 1 (C) (D) Not Defined	
55.	A homogeneous differential equation of the form	1
	$\frac{dy}{dy} = f(\frac{y}{dy})$ can be solved by making the substitution	
	$dx = x^{2}$	
	$(\mathbf{R}) \mathbf{y} = \mathbf{v}\mathbf{x}$	
	(B) U = yx	
	(C)x = by	
	$(D)y \equiv v$	
56.	The Integrating factor of the differential equation	1
	$(1+x^2)\frac{dy}{dy} + 2xy = \frac{1}{1-x^2}$	
	$dx = 1 + x^2$	
	$(\Lambda) 1 m^2$	
	$ (A) \perp - x$	

	(B) $\frac{1}{2}$	
	$(1+x^2)$	
	(C) 1 + x (D) a^{1+x^2}	
57	(D)e	1
57.	$a^{x} dy + (ya^{x} + 2x) dx = 0$ is	–
	$e^{x} dy + (ye^{x} + 2x)dx = 0$ is	
	$(A)xe^{y} + x^{2} = C$	
	(B) $xe^{y} + y^{2} = C$	
	(C) $ye^{x} + x^{2} = C$	
	(D) $ye^y + x^2 = C$	
58.	The Integrating factor of the differential equation	1
	$x \frac{dy}{dx} - y = 2x^2$ is	
	dx ^y	
	$(\Lambda) e^{-x}$	
	(A) $e^{-\gamma}$	
	$(C) = \frac{1}{x}$	
	(D) <i>x</i>	
59.	The general solution of the differential equation	1
	$\frac{dy}{dx} = e^{x+y}$ is	
	dx = c is $dx = y$. C	
	$(A)e^{x} + e^{-y} = C$	
	(B) $e^{x} + e^{y} = C$	
	(C) $e^{-x} + e^{y} = C$	
	(D) $e^{-x} + e^{-y} = C$	
60.	The number of arbitrary constants in the particular solution of a differential	1
	equation of fifth order are	
	5 (B) 2 (C) 3 (D) 0	
61.	The order of the differential equation	1
	$2x^2d^2y/dx^2-3dy/dx+y=0$ is	
	$(a)_{2}$	
	(c)	
	(d)not defined	
62.	The degree of differential equation	1
	$1 + \left(\frac{dy}{dx}\right)^2 = x$ is	
	(a)1	
	(b)2	
	(c)3	
62	(a)not defined The order and degree of the differential equation	1
03.	$\frac{1}{\sqrt{1-v^2}} dv + v \sqrt{1-v^2} dv$	1
	(a)1 and 1	
	(b)1 and 2	

		(c)2 and 1	
		(d)1 and 3	
	64.	The order and degree (if defined) of the differential equation	1
		$d^2y/dx^2 + x(d\frac{dy}{dx})^2 = 2x^2\log(d^2y/dx^2)$	
		(a)2 and 3	
		(b)2 and 1	
		(c)2 and not defined	
		(d) None of these	
	65	The number of arbitrary constants in the particular solution of a differential equation of	
	05.	second order is(are)	1
		(a)0	-
		(b)1	
		(c)2	
		(d)3	
	66.	The differential equation	1
		$Y\frac{dy}{dt} + x = C$ represents	
		(a) family of hyperbolas	
		(b)family of parabolas	
		(c)family of ellipses	
		(d)family of circles	
	67.	Which of the following is not a homogeneous function of x and y	1
		$(a)x^2 + 2xy$	
		(b)2x - y	
		$(c)\cos^2(\frac{y}{x}) + \frac{y}{x}$	
		(d)sinx -cosy	
	68.	If the slope of the tangent to the curve at any point $P(x,y)$ is $\frac{y}{r} - \cos^2 \frac{y}{r}$, then the equation of a	1
		curve passing through $(1,\frac{\pi}{2})$	
		is	
		$a_{1}(a) \tan(\frac{y}{2}) + \log x = 1$	
		$(x) \tan(x) + \log x + 1$	
		$(b)tan(\frac{x}{x}) + logy = 1$	1
		$(c)\tan(\frac{x}{y}) + \log x = 1$	
		$(d)\tan(-) + \log y = 1$	
	69	The integrating factor of	1
	05.	$(\operatorname{sinv})^{dy}$ $(2\operatorname{cosv})_{y=\operatorname{sinv}}$	
		$(\sin x) \frac{1}{dx} + (2\cos x)y - \sin x\cos x$	
		(a)secx $(b)(c) = b^2$	
		$(b)(\sin x)^2$	
		(c)(cosecx) $(d)(tanx)^2$	
	70	The general solution of the differential equation	1
ļ	,	$e^{2x}\frac{dy}{dx} + 3e^{2x}x - 1$ is	-
		$\int \frac{dx}{dx} = \frac{1}{x} + C$	
		(a) $ye^{3x} = e^{-x} + C$ (b) $ye^{3x} = e^{-x} + C$	
		$(0)yc - c + C$ $(c)ye^{3x} - e^{x} + C$	
		$(c) y c^{2} = c^{2} + c^{2}$ (d) $ve^{x} = e^{3x} + C$	
J			1

ANSWERS:

Q. NO	ANSWER	MARKS
1.	c	1
2.	b	1
3.	c	1
4.	a	1
5.	a	1
6.	b 1	1
/.	d	1
8.		1
9.	d b	1
10.	i	1
11.	i	1
13	iii	1
14.	iii	1
15.	ii	1
16.	iii	1
17.	ii	1
18.	i	1
19.	iv	1
20.	iv	1
21.	D	1
22.	C	1
23.	Α	1
24.	Α	1
25.	D	1
26.	С	1
27.	В	1
28.	D	1
29.	D	1
30.	С	1
31.	C	1
32.	A	1
33.	B	1
34	D	1
25		1
<u> </u>		1
36.	В	1
37.	C	1
38.	C	1
39.	С	1
40.	В	1
41.	Order = 2, Degree = 1	1
42.	Order = 2, Degree = 2	1
43.	Degree = Not Defined	1

44.	Order = 4, Degree = 2	1
45.	$\frac{d}{dx} \left[\left(\frac{d^2 y}{dx^2} \right)^4 \right] = 0$	1
	$\implies 4. \left(\frac{d^2 y}{dx^2}\right)^3 \cdot \frac{d^3 y}{dx^3} = 0$	
	$\implies \left(\frac{d^2y}{dx^2}\right)^3 \frac{d^3y}{dx^3} = 0$	
	Order = 3, Degree = 1	
46	Order + Degree = 3 + 1 = 4 $Order + Degree = 2 + 1 = 3$	1
40.	$\frac{dy}{dy} = \frac{2}{3}$	1
	$x\frac{1}{dx} - 2y = 2x^2$	
	$\Rightarrow \frac{dy}{dy} - \frac{2y}{dy} = 2x$ (i)	
	dx = x + (0)	
	$\frac{dy}{dx} + Py = Q \dots (ii)$	
	On comparison, we get	
	$P = -\frac{2}{2}, Q = 2x$	
	x'	
	Integrating Factor (I. F) = $e^{\int p dx} = e^{\int \frac{x}{x}} = e^{-2 \log x } = e^{\log x } = \frac{1}{x^2}$	
48.	$(\tan^{-1} y - x)dy = (1 + y^2)dx$	1
	\Rightarrow $(\tan^{-1}y - x) = (1 + y^2)\frac{dx}{dx}$	
	$dr (\tan^{-1} v - r)$	
	$\Rightarrow \frac{dx}{dy} = \frac{(dx)(y-x)}{(1+y^2)}$	
	dx x $\tan^{-1}y$	
	$\Rightarrow \frac{1}{dy} + \frac{1}{1+y^2} = \frac{1}{1+y^2} \dots (i)$	
	$\frac{dx}{dx} + Px = 0$ (ii)	
	$\frac{dy}{dy}$ + 1 x - Q (ii)	
	On comparison, we get	
	$P = \frac{1}{1+y^2}, Q = \frac{\tan^2 y}{1+y^2}$	
	Integrating Factor (I. F) = $e^{\int p dy} = e^{\int \frac{dy}{1+y^2}} = e^{\tan^{-1} y}$	
49.	4	1
50.	0	1
51.	A	1
52.	В	1
53.	D	1
54.	D	1
55.	A	1
56.	С	1
57.	С	1
58.	C	1
59.	A	1
60.	D	1

61.	(a)	1
62.	(b)	1
63.	(a)	1
64.	(c)	1
65.	(a)	1
66.	(d)	1
67.	(d)	1
68.	(a)	1
69.	(b)	1
70.	(a)	1