CHAPTER-10

VECTORS

01 MARK TYPE QUESTIONS

	QUESTION	MARK
Q. NO 1.	If points A (60 î+ 3 ĵ), (40 î– 8 ĵ) and C (aî- 52ĵ) are collinear, then 'a' is equal to	1
	a) 40 b) -40 c) 20 d) -20	
2.	The value of \hat{i} . $(\hat{j}x \hat{k}) + \hat{j}$. $(\hat{i}x \hat{k}) + \hat{k}$. $(\hat{i}x \hat{j})$ is	1
	a) 0 b) -1 c) 1 d) 3	
3.	If $ \vec{a} = 2$, $ \vec{b} = 5$ and $ \vec{a} \times \vec{b} = 8$, find $ \vec{a} \times \vec{b} = 8$	1
	a) 6 b)1 c)7 d)0	
4.	Find the area of the gm whose adjacent sides are represented by the vectors	1
	$\vec{a} = 3 \hat{i} + \hat{j} - 2 \hat{k}, \vec{b} = \hat{i} - 3 \hat{j} + 4 \hat{k}$	
	a)10 b) 10v3 c)8 d)12	
5.	\vec{a} is a unit vector and $(\vec{x} - \vec{a})(\vec{x} + \vec{a}) = 8$, then find $ \vec{x} $	1
	a)2 b)5 c)3 d)1 If a x b = 4, a . b =2, then a	
6.		1
	2	
	is NGLVO VOC NO	
	a) 6 b) 2 c) 20 d) 8 If $ \vec{a} = 2$, $ \vec{b} = 7$ and $\vec{a} \times \vec{b} = 3 \hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between \vec{a} and \vec{b}	
7.	If $ a = 2$, $ b = 7$ and $a \times b = 3 + 2j + 6k$, find the angle between a and b	1
	a) $\pi/6$ b) π c) 0 d) none	
	Find a vestor of magnitude 2/2 write which makes an angle of -/4 -/2 with world	1
8.	Find a vector of magnitude 3V2 units which makes an angle of $\pi/4$, $\pi/2$ with y and	1
	z-axes, respectively.	
9.	a) ± 3î+ 3ĵ b) 3î- 3ĵ c) ± 5î+ 3ĵ d) none If points A (60 î+ 3 ĵ), (40 î– 8 ĵ) and C (aî- 52ĵ) are collinear, then 'a' is equal to	1
9.	a) 40 b) -40 c) 20 d) -20	1
10.	If $\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k}$, $\vec{b} = -\hat{i} + 2 \hat{j} + \hat{k}$, $\vec{c} = 3 \hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is	1
10.	perpendicular to c^2 , then find the value of λ .	*
	a)9 b)8 c)5 d)1	
11.	Let $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} + c\hat{k}$. The value of c if $ \vec{a} = 5$ is	1
11.		1
10	(a)0 (b) $2\sqrt{3}$ (c) 1 (d)12	
12.	If $\vec{a} = (2\hat{\imath} - 4\hat{\jmath} + 5\hat{k})$ then the value of h so that $h\vec{a}$ may be unit vector is	1
	$(a)\frac{1}{5}$ $(b)\frac{1}{\sqrt{3}}$ $(c)\frac{1}{3\sqrt{5}}$ $(d)\frac{1}{5\sqrt{3}}$	
	5	
12		1
13.	If $\overrightarrow{AB} = (2\hat{\imath} + \hat{\jmath} - 3\hat{k})$ and A(1,2,-1) is the given point, then the coordinates of B are	1
	(a) (3,-3,4) (b) (3,3,4) (c) (-3,-3,-4) (d) (3,3,-4)	
14.	If $ \vec{a} \times \vec{b} = 4$, $\vec{a} \cdot \vec{b} = 2$, then $ \vec{a} ^2 \vec{b} ^2 =$	1
	(a)6 (b)20 (c)8 (d)2 If \vec{a} is any vector, then \vec{a} . \vec{a} is	
15.	If \vec{a} is any vector, then \vec{a} . \vec{a} is	1
	(a)0 (b) $\neq 0$ (c) $\vec{0}$ (d) $ \vec{a} ^2$	
16.	If \vec{a} and \vec{b} are two vectors of magnitude 3 and $\frac{2}{3}$ respectively such that $\vec{a} \times \vec{b}$ is a unit vector,	1
_		-
	then the angle between \vec{a} and \vec{b} is	
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{8}$ A vector of magnitude 9 units in the direction of the vector	
17.	A vector of magnitude 9 units in the direction of the vector	1
	$(-2\hat{\imath}+\hat{\jmath}+2\hat{k})$ is	

	(a) $(-3\hat{i}+6\hat{j}+6\hat{k})$ (b) $(-6\hat{i}+3\hat{j}+3\hat{k})$ (c) $(-6\hat{i}+3\hat{j}+6\hat{k})$ (d) $(6\hat{i}+6\hat{j}-3\hat{k})$	
18.	A A A	1
	(a)-1 (b) 1 (c) -2 (d) 2	_
19.	- In the last of the last of the last of the same and	1
20.	(a)1 (b)2 (c)3 (d)4 If \vec{a} and \vec{b} are two collinear vectors, then which of the following is incorrect?	1
	(a) $\vec{b} = h\vec{a}$, for som scalar h	-
	(b) $\vec{a} = \pm \vec{b}$	
	(c) the respective components of \vec{a} and \vec{b} are proportional	
	(d)both the vector \vec{a} and \vec{b} have same direction, but different magnitudes.	
21.		1
	(a) $\hat{i} - 2\hat{j} + 2\hat{k}$ (b) $\frac{1}{3}(\hat{i} - 2\hat{j} + 2\hat{k})$	
	(a) $\hat{\imath} - 2\hat{\jmath} + 2\hat{k}$ (b) $\frac{1}{3}(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$ (c) $3(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$ (d) $9(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$ The position vectors of the points A, B, C are $2\hat{\imath} + \hat{\jmath} - \hat{k}, 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$ and $\hat{\imath} + 4\hat{\jmath} - \hat{k}$	
22.	The position vectors of the points A, B, C are $2\hat{i} + \hat{j} - \hat{k}$, $3\hat{i} - 2\hat{j} + \hat{k}$ and $\hat{i} + 4\hat{j} - \hat{k}$	1
	$3\hat{k}$ respectively. These points:	
	(a) form an isosceles triangle (b) form a right triangle (c) are collinear (d) form a scalene triangle	
23.		1
	(a) $\frac{\sqrt{5}}{2}$ (b) $\frac{5}{\sqrt{2}}$ (c) $\frac{\sqrt{5}}{6}$ (d) $\frac{\sqrt{6}}{5}$ If θ is the angle between any two vectors \vec{a} and \vec{b} , then $ \vec{a} \times \vec{b} = \vec{a}.\vec{b} $ when θ is:	
24.	If θ is the angle between any two vectors \vec{a} and \vec{b} , then $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} $ when θ is:	1
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{2\pi}{3}$ (d) none of these	
25.	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{2\pi}{3}$ (d) none of these If \hat{a} , \hat{b} , \hat{c} are mutually perpendicular unit vectors, then value of $ \hat{a} + \hat{b} + \hat{c} $ is:	1
	(a) 1 (b) $\sqrt{2}$ (c) $\sqrt{3}$ (d) 2 The vector $\vec{b} = 3\hat{\imath} + 4\hat{k}$ is to be written as the sum of a vector α parallel to $\vec{a} = \hat{\imath} + \hat{\jmath}$ and a vector	
26.	The vector $\vec{b} = 3\hat{\imath} + 4\hat{k}$ is to be written as the sum of a vector α parallel to $\vec{a} = \hat{\imath} + \hat{\jmath}$ and a vector	1
	$\vec{\beta}$ perpendicular to \vec{a} . Then $\vec{\alpha}$ is:	
	(a) $\frac{3}{2}(\hat{i}+\hat{j})$ (b) $\frac{2}{3}(\hat{i}+\hat{j})$ (c) $\frac{1}{2}(\hat{i}+\hat{j})$ (d) $\frac{1}{3}(\hat{i}+\hat{j})$ If the position vectors of P and Q are $\hat{i}+3\hat{j}-7\hat{k}$ and $5\hat{i}-2\hat{j}+4\hat{k}$ then cosine of the angle	
27.	If the position vectors of P and Q are $\hat{i} + 3\hat{j} - 7\hat{k}$ and $5\hat{i} - 2\hat{j} + 4\hat{k}$ then cosine of the angle	1
	between \overrightarrow{PQ} and y-axis is:	
	(a) $\frac{5}{\sqrt{162}}$ (b) $\frac{4}{\sqrt{162}}$ (c) $\frac{11}{\sqrt{162}}$ (d) $-\frac{5}{\sqrt{162}}$	
28.	\vec{a} and \vec{b} are two unit vectors and θ is the angle between them then $\cos \frac{\theta}{2} =$	1
	$(a)\frac{1}{2} \vec{a} + \vec{b} \qquad (b) \vec{a} + \vec{b} \qquad c) \vec{a} - \vec{b} \qquad (d) \frac{1}{2} \vec{a} - \vec{b} $ $\vec{a}, \vec{b}, \text{ and } \vec{c} \text{ are three unit vectors such that } \vec{a} + \vec{b} + \vec{c} = \vec{0}, \text{ then } \vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} =$	
29.	\vec{a} , \vec{b} , and \vec{c} are three unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} =$	1
	3 (b) $-\frac{3}{2}$ (c) $\frac{3}{2}$ (d) 3	
30.	In the following questions, a statement of assertion followed by a statement of reason is	1
	given. Choose the correct answer out of the following choice as follows:	
	a) Assertion and reason both are correct statements and reason is correct explanation	
	for assertion.	
	b) Assertion and reason both are correct statements but reason is not correct	
	explanation for assertion.	
	c) Assertion is correct statement but reason is wrong statement.	
	d) Assertion is wrong statement but reason is correct statement.	

	Assertion (A): The area of parallelogram with diagonals \vec{a} and \vec{b} is $ \vec{a} \times \vec{b} $.		
	Reason(R): If \vec{a} and \vec{b} represent the adjacent sides of a triangle, then the area of a triangle,		
	then the area of triangle can be obtained by evaluating $ \vec{a} \times \vec{b} $.		
31.	Classify the following as scalar and vectors:		
	(i) 20 kg weight		
	(ii) $50m/s^2$.		
32.	Find the position vector of the point which divides the join of the points $2\vec{a} - 3\vec{b}$ and $3\vec{a} - 2\vec{b}$ internally.		
33.	Let $\vec{a} = \hat{\imath} + 2\hat{\jmath}$ and $\vec{b} = 2\hat{\imath} + \hat{\jmath}$. Is $ \vec{a} = \vec{b} $? Are the vectors equal?	1	
34.	Find the projection of the vector $7\hat{\imath} + \hat{\jmath} - 4\hat{k}$ on $2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}$.	1	
35.			
	$3\hat{k}$ are		
	(i) Perpendicular		
	(ii) Parallel		
36.	Find the angle between two vectors \vec{a} and \vec{b} having the same length $\sqrt{2}$ and	1	
	their scalar product is -1 .		
37.	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, find the value of $(\vec{r} \times \hat{\imath}) \cdot (\vec{r} \times \hat{\jmath}) + xy$.	1	
38.	Find a unit vector perpendicular to both the vectors $\hat{\imath}-2\hat{\jmath}+3\hat{k}$ and $\hat{\imath}+2\hat{\jmath}-$	1	
	\hat{k} .		
39.	If $\vec{a}=\hat{\imath}+3\hat{\jmath}-2\hat{k}$ and $\vec{b}=-\hat{\imath}+3\hat{k}$ then find $ \vec{a}\times\vec{b} $.	1	
40.	Find $\hat{\imath}.\hat{\imath},\hat{\jmath}.\hat{\jmath}$, and $\hat{k}.\hat{k}$ also find $\hat{\imath}\times\hat{\imath},\hat{\jmath}\times\hat{\jmath}$ and $\hat{k}\times\hat{k}$		
41.	The value of expression $ \vec{a} \times \vec{b} ^2 + (\vec{a} \cdot \vec{b})^2$ is	1	
	$(x) \rightarrow \vec{x} \qquad (x) \rightarrow (x) \rightarrow (x) \rightarrow (x) \rightarrow \vec{x}$		
42.	(a) $\vec{a} \cdot \vec{b}$ (b) $ \vec{a} \cdot \vec{b} $ (c) $ \vec{a} ^2 \vec{b} ^2$ (d) $(\vec{a} \cdot \vec{b})$	1	
42.	If is any non zero vector then $(\vec{a} \cdot \hat{i}) \hat{i} + (\vec{a} \cdot \hat{j}) \hat{j} + (\vec{a} \cdot \hat{k}) \hat{k}$ is equal to (a) $\vec{a} \cdot \vec{b}$ (b) \vec{a} (c) 0 (d) None of these	1	
	(a) a.b (b) a (c) o (d) None of these		
43.	The vector in the direction of the vector $(i - 2\hat{j} + 2\hat{k})$ has the magnitude 9 is	1	
	(a) $(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$ (b) $\frac{\hat{\imath} - 2\hat{\jmath} + 2\hat{k}}{3}$ (c) $3(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$ (d) $9(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$		
44.	The direction cosine of vector \overrightarrow{BA} , where the coordinates of A and B are $(1,2,-1)$ and $(3,4,0)$	1	
	respectively, are (a) -2,-2,-1 (b) $-\frac{2}{3}$, $-\frac{2}{3}$, $-\frac{1}{3}$ (c) 2,2,1 (d) $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$		
	(a) $-2, -2, -1$ (b) $-\frac{1}{3}, -\frac{1}{3}$ (c) $2, 2, 1$		
45.	Angle between two vectors \vec{a} and \vec{b} with magnitude $\sqrt{3}$ and 4 respectively and $\vec{a} \cdot \vec{b} = 2\sqrt{3}$	1	
	is		
	(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{5\pi}{2}$ The value of p for which the vectors $2\hat{\imath} + p\hat{\jmath} + \hat{k}$ and $-4\hat{\imath} - 6\hat{\jmath} + 26\hat{k}$ are perpendicular to		
46.	The value of p for which the vectors $2\hat{i} + p\hat{j} + \hat{k}$ and $-4\hat{i} - 6\hat{j} + 26\hat{k}$ are perpendicular to each other, is	1	
	(a) 3 (b) -3 (c) $\frac{-17}{3}$ (d) $\frac{17}{3}$		
47.	Two vectors $\vec{a} = A \hat{i} + B \hat{j} + C \hat{k}$ and $\vec{b} = L \hat{i} + M \hat{j} + N \hat{k}$ are collinear if	1	
<u> </u>	,	1	

	(a) AL + BM + CN= 0 (b) $\frac{A}{L} = \frac{B}{M} = \frac{C}{N}$	(c) A=L,B=M, C=N (c	d) None of these	
48.	The value of $(\hat{\imath} \times \hat{\jmath}) \cdot \hat{\jmath} + (\hat{\jmath} \times \hat{\imath}) \cdot \hat{k}$ is			1
	(a) 2 (b) 0	(c) 1	(d) -1	
49.	If $ \vec{a} = 4$ and $-3 \le \delta \le 2$ then the range of $ \delta \vec{a} $	<i>i</i> is		1
	(a) $[0,8]$ (b) $[-12,8]$	(c) $[0, 12]$	(d) [8, 12]	
50.	In $\triangle ABC$, $\overrightarrow{AB} = \hat{\imath} + \hat{\jmath} + 2\hat{k}$ and $\overrightarrow{AC} = 3\hat{\imath} - \hat{\jmath} + \hat{\jmath}$	$4\hat{k}$.If D is mid-point of 1	BC, then, \overrightarrow{AD} is	1
	equal to	-		
	(a) $4\hat{i} + 6\hat{k}$ (b) $2\hat{i} - 2\hat{j} + 2\hat{k}$	(c) $\hat{i} - \hat{j} + \hat{k}$	(d) $2\hat{\imath} + 3\hat{k}$	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	b	1
2.	d	1
3.	a	1
4.	b	1
5.	С	1
6.	С	1
7.	a	1
8.	a	1
9.	b	1
10.	b	1
11.	b	1
12.	С	1
13.	d	1
14.	b	1
15.	d	1
16.	С	1
17.	c	1
18.	b	1
19.	С	1
20.	d	1
21.	$C. 3(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$	1
22.	A. form an isosceles triangle	1
23.	$C. \frac{\sqrt{5}}{6}$ $B. \frac{\pi}{4}$	1
24.	$B.\frac{\pi}{4}$	1
25.	$C.\sqrt[4]{3}$	1
26.	C. $\sqrt{3}$ A. $\frac{3}{2}(\hat{\imath}+\hat{\jmath})$	1
27.	D. $-\frac{5}{\sqrt{162}}$ A. $\frac{1}{2} \vec{a} + \vec{b} $	1
28.	$A. \frac{1}{2} \vec{a} + \vec{b} $	1

29.	$B\frac{3}{2}$	1
30.	C. Assertion is correct statement but reason is wrong statement.	1
31.	(i) Scalar	1
	(ii) Vector	
32.	$\frac{12}{5}\vec{a} - \frac{13}{5}\vec{b}$	1
33.	Magnitude is equal ($\sqrt{5}$) of both vectors but since components if the vectors are not equal both vectors are not same.	1
34.	8/7	1
35.	(i) P=-15 (ii) P=2/3	1
36.	$\frac{2\pi}{3}$	1
37.	0	1
38.	$4\sqrt{3}$	1
39.	$\sqrt{91}$	1
40.	1,1,1 AND 0,0,0	1
41.	(c)	1
42.	(b)	1
43.	(c)	1
44.	(b)	1
45.	(b)	1
46.	(a)	1
47.	(b)	1
48.	(d)	1
49.	(c)	1
50.	(d)	1