CHAPTER-8 APPLICATION OF INTEGRALS 02 MARK TYPE QUESTIONS

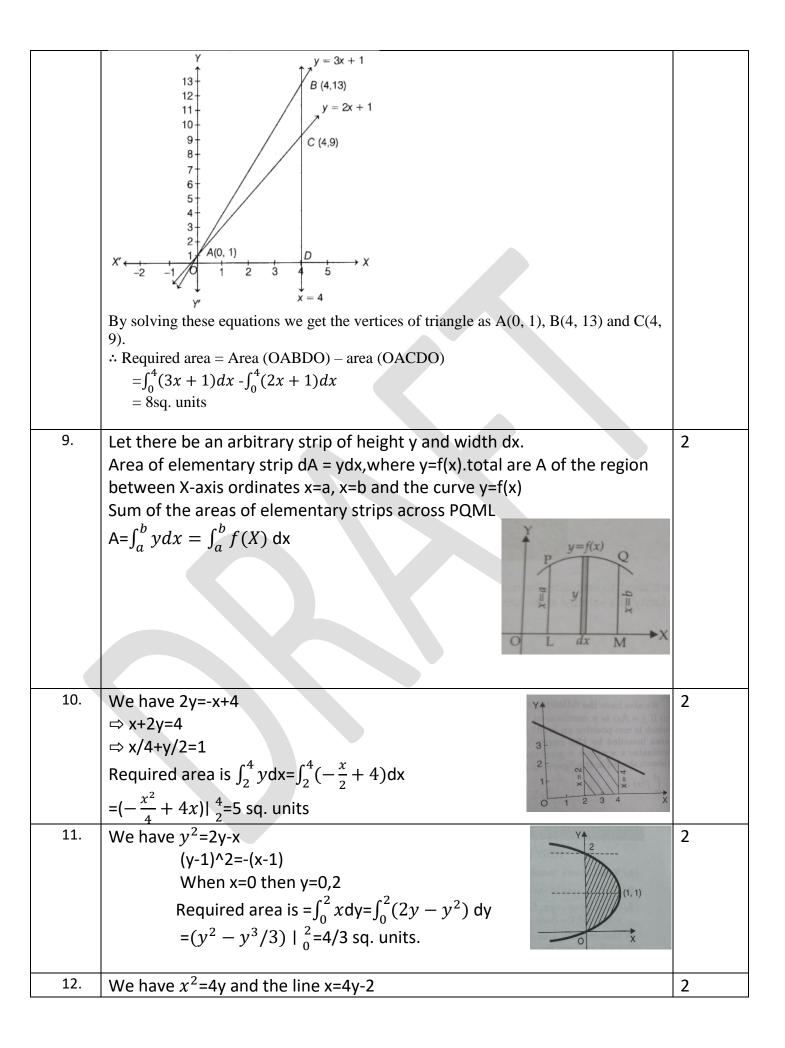
Q. NO	QUESTION	MARK
1.	Find the area bounded by the curve $y = x x $, x-axis and $x = -1$ and $x = 1$.	2
2.	Find the area bounded by the lines $ x + y =1$.	2
3.	Find the area bounded by the curves $y = x^2$ and the line $y=4$.	2
4.	Find the area of the curve $y = sinx$ between 0 and π .	2
5.	Find the area of the region bounded by $y^2 = 9x$, $x = 2$, $x = 4$ and the $x - axis$ in the first quadrant.	2
6.	Find the area between the curves $y = x$ and $y = x^2$.	2
7.	Write the formula of $\int \sqrt{a^2 - x^2} dx$	2
8.	Using integration, find the area of the triangular region whose sides have the equations $y = 2x + 1$, y = 3x + 1 and $x = 4$.	2
9.	Write the Geometric significance of the integral $\int_a^b f(x) dx$.	2
10.	Using integration, Find the area of the region bounded by the line 2y= -x+8, X- axis and the lines X=2 andx=4.	2
11.	Find the area bounded by the curvey ² = 2y-xand Y axis.	2
12.	Find the area of the region bounded by the curve $x^2=4y$ and the straight line $x=4y-2$.	2
13.	Find the area of the region bounded by the curve X axis and $y = 2x-x^2$.	2
13.	Using integration find the area of the region bounded by the line $2y = -x+8$, x-axis and the line $x = 2$ and $x = 4$	2
15.	Using integration find the area of the region bounded between the line x = 4 and the parabola $y^2 = 4x$.	2
16.	Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	2
17.	Find the area of the region bounded by the curve $y^2 = x$ and the line x = 1, x = 4 and the x- axis.	2
17.	Find the area of the region bounded by the curve parabola $y = x^2$ and the line $y = x $.	2
10.	Find the area bounded between $y = \sin^{-1}x$ and y-axis between $y = 0$ and $y = \pi/2$.	2
20.	If the area bounded between $y = 3x$, x-axis and between the ordinates $x = 1$ and $x = b$ is 12 squnits, then find the value of b.	2
21.	If the area bounded by the parabola $y^2 = 16x$ and the line x=a is 128/3 sq. units, then find the value of a.	2
22.	Using integration check whether given statement is true or false	2
	Statement: The region under the curve $y = \sqrt{(1 - x^2)}$ on the interval [-1,1] has area A = $\pi/2$,	
23.	Find the area of the region bounded by the $y = x - 5 $ and ordinates x=0 and x=1.	2
24.	Using integration, find the area of the region bounded by: y=mx (m > 0, x= 1, x= 2 and the x-axis).	2
25.	Sketch the region bounded by the lines $2x+y = 8$, $y = 2$, $y = 4$ and the y-axis. Hence, obtain its area, using integration.	2
26.	Find the area bounded by $y = x^2$, the x-axis and the lines $x = 1$ and $x = -1$.	2
27.	Find the area bounded by the curve $y = x^3$, $x = -2$ and $x = 1$.	2

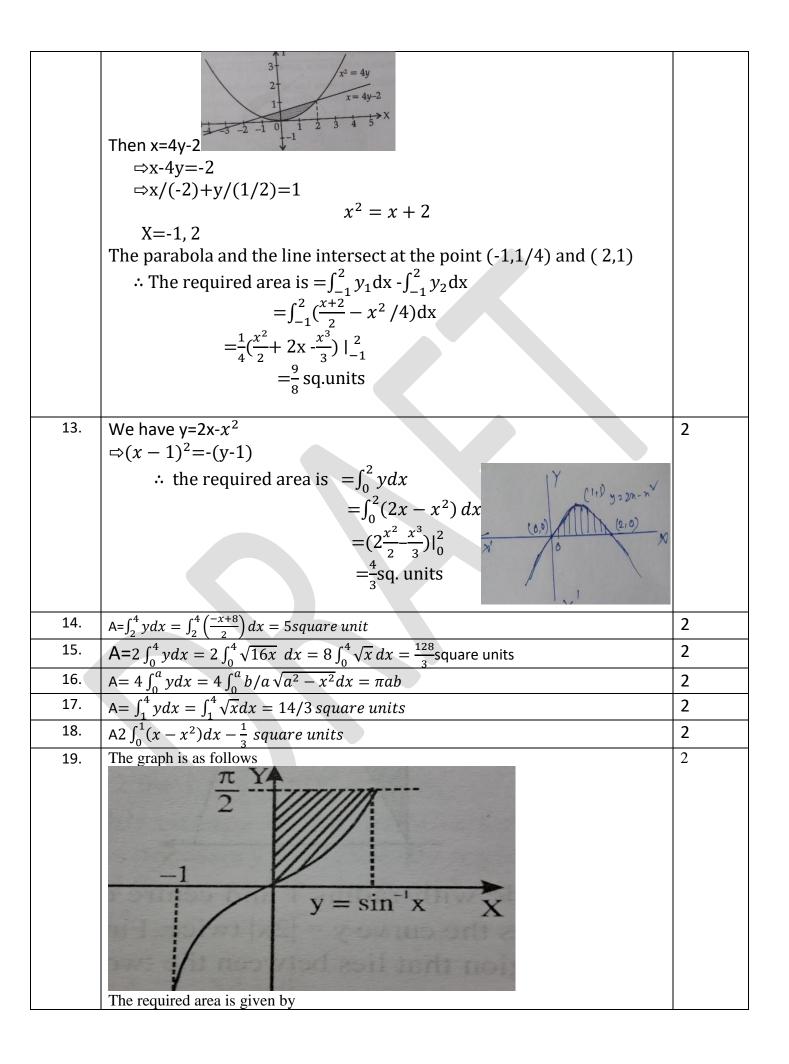
28.	Find the area of the region bounded by the parabola $y^2 = 8x$ and the line $x = 2$.	2
28.	Find the area of the region bounded by the parabola $y^2 = 8x$ and the line $x = 2$. Reshma draw a beautiful painting in which she draw mountains, trees, birds, river, houses etc. His little brother come across the painting and cut one of the mountain by drawing a straight line. Based on the above information find the area bounded by mountain and straight line . The equation of mountain is $y = -x^2$ and equation of straight line is x + y + 2 = 0	2
30.	Find the area bounded by the curve $y^2 = 9x$ and $y = 3x$.	2
31.	Location of the three houses of a society is represented by points A(0,5), B(3,2) and C (1,1). Find the area bounded by these three houses and the equation of line represented by house A, B, C are $y = 4x + 5$, y = 5 - x, and $4y = x + 5$. V V V V V V V V	2
32.	A circular Pizza is cut into 8 equal pieces with the help of knife then find the area of region bounded by each pieces of pizza if the equation of pizza and knife is represented by $x^2 + y^2 = 32$ and $y = x$ respectively.	2
33.	Consider the following curve and find the area under the curve $y = 2\sqrt{x}$ included between the line x=0 and x=1 is	2

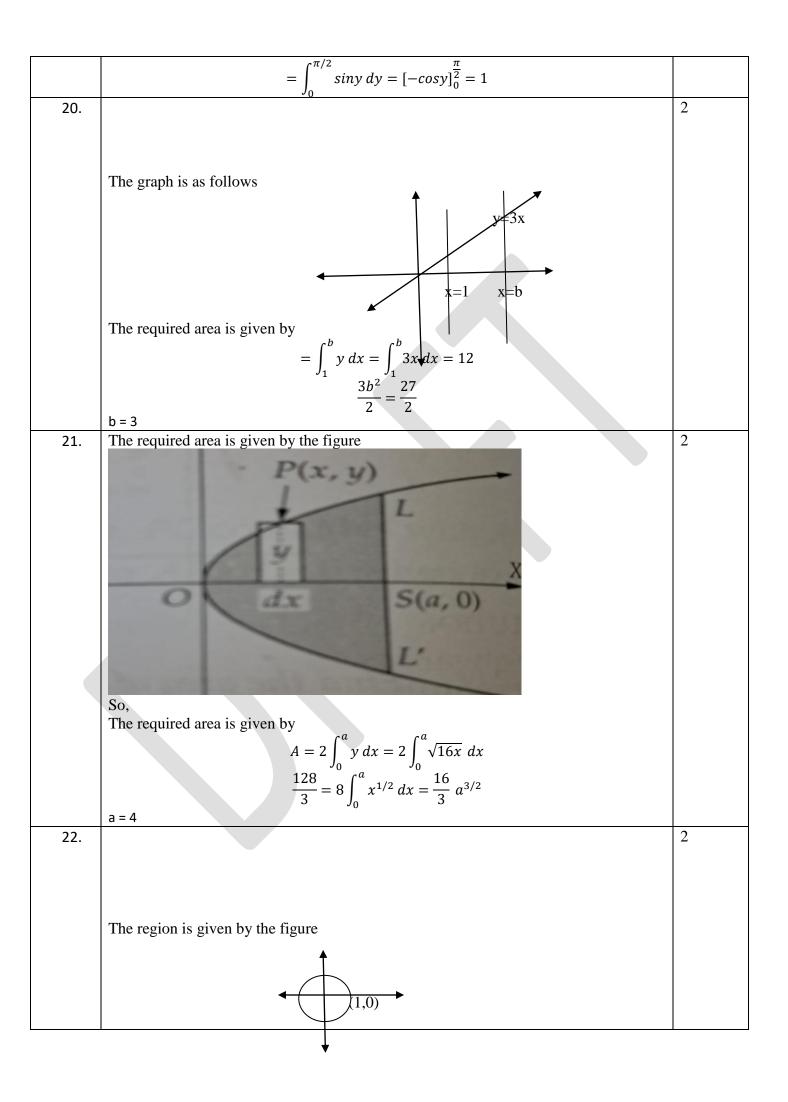
ANSWERS:

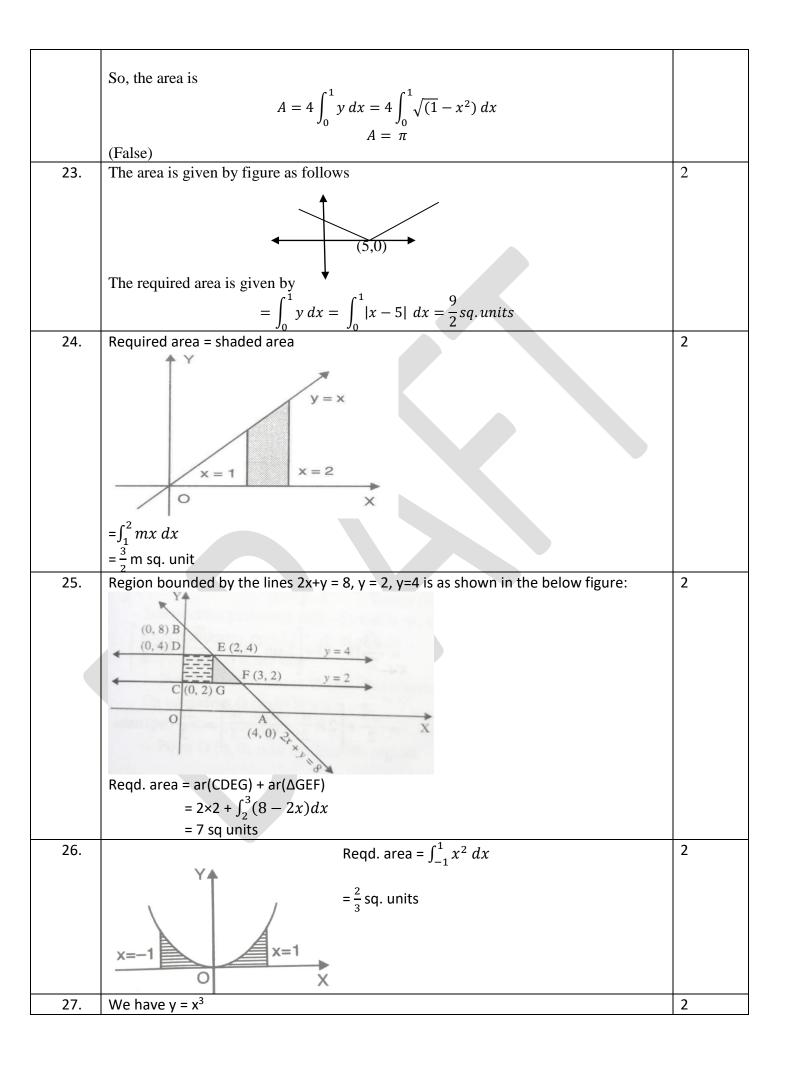
r		1
Q. NO	ANSWER	MARKS
1.	We know $Y = x x $ $Y = \{x^2 if x > 0 - x^2 if x < 0$	2
	$x = -1$ $x = -1$ $y = -x^{2}$	
	Area ABO = $\int_{-1}^{0} y dx = \int_{-1}^{0} -x^2 dx = -(1/3)$ since area is always positive so area ABO is 1/3 Area DCO = $\int_{-1}^{0} y dx = \int_{-1}^{0} .x^2 dx = (1/3)$ So, required area is $1/3 + 1/3 = 2/3$.	
2.	Area ABO = $\int_{-1}^{0} y dx$ where the shaded part having the oblique line equation be x + y = 1 so, y = 1 - x Therefore Area ABO = $\int_{-1}^{0} (1 - x) dx$	2
	$= \frac{1}{2}$ So, required area is 4 * Area of AOB = 4*(1/2) = 2sq. unit	
3.	We have $y = x^2$ and $y = 4$ Let AB represent the line $y=4$	2
	$\begin{array}{c c} & y \\ \hline C & B \\ \hline \end{array} y=4 \\ \hline \hline 0 & x \end{array}$	

	Let AOB represent $y = x^2$ i.e $x = \pm \sqrt{y}$	
	Since BOCB is in the 1 st quadrant, we use only positive value of \sqrt{y}	
	Area of AOBA= $2^* \int_0^4 \sqrt{y} dy = (32/3)$ sq. unit	
4.	$\begin{array}{c} \mathbf{Y} \\ \mathbf{A} \\ \mathbf{B} \\ \mathbf{X} \end{array}$	2
	$y = sinx$ O $\pi/2$ π	
	Area of OAB= $\int_{0}^{\pi} y dx = \int_{0}^{\pi} sindx = 2$ sq. units	
5.	Area of OAB= $\int_0^{\pi} y dx = \int_0^{\pi} sindx = 2$ sq. units $y^2 = 9x$, $x = 2$, $x = 4$ and the $x - axis$ in the first quadrant	2
	$X' \xrightarrow{Y} y^2 = 9_X$ $X' \xrightarrow{A} B \xrightarrow{X} x = 4$ Y'	
	Required area= $\int_{2}^{4} y dx$	
	$=\int_{2}^{4}\sqrt{9x}dx$	
	$=\int_{2}^{4} 3\sqrt{x} dx$	
	$=16-4\sqrt{2} \text{ sq. units}$	
6.	y = x	2
	$y = x^{2}$ On solving x = 0, 1 Area = $\int_{0}^{1} (x - x^{2}) dx$ = $\frac{1}{6} sq$ unit.	
7.	$\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + c$	2
8.	Given eq. of the lines are	2
	y = 2x + 1(1)	
	y = 3x + 1(2) x = 4(3)	
L		I









	$\therefore \text{ Reqd. area} = \left \int_{-2}^{0} x^3 dx \right + \int_{0}^{1} x^3 dx$	
	x = -2	
	$= \left \left[\frac{x^4}{4} \right]_{-2}^0 \right + \left[\frac{x^4}{4} \right]_{0}^1$	
	$= \left \left(0 - \frac{16}{4} \right) \right + \left(\frac{1}{4} - 0 \right) = \frac{16}{4} + \frac{1}{4} = \frac{17}{4}.$	
28.	Reqd. area = $2 \int_0^2 \sqrt{8x} dx$ = $\frac{8}{3} \sqrt{2} [2^{\frac{3}{2}} - 0]$ = $32/3$ sq. units	2
29.	Required area = $\left(\int_{-1}^{2} (y_1 - y_2) dx\right)$	2
	$=\int_{-1}^{2} -x^{2} - x - 2 dx$ = $\int_{-1}^{2} -x^{2} + x + 2 dx$ = $\left[-\frac{x^{3}}{3} + \frac{x^{2}}{2} + 2x\right]_{-1}^{2}$ = $\left(-\frac{8}{3} + 6\right) - \left(\frac{1}{3} + \frac{1}{2} - 2\right)$ = $\frac{9}{2}$ sq. units	
30.	We have $y^2 = 9x$ and $y = 3x$ $\Rightarrow (3x)^2 = 9x$ $\Rightarrow 9x^2 = 9x$ $\Rightarrow 9x(x-1) = 0$ $\Rightarrow x = 0,1$ \therefore Required bounded area $= \int_0^1 \sqrt{9x} dx - \int_0^1 3x dx$ $= 3\left[\frac{x^2}{\frac{3}{2}}\right]_0^1 - 3\left[\frac{x^2}{2}\right]_0^1$ $= 3\left(\frac{2}{3}-0\right) - 3\left(\frac{1}{2}-0\right)$ $= 2 - \frac{3}{2}$ $= \frac{1}{2}$ sq units	2
31.	∴ Required bounded area between three houses	2
	$= \int_{-1}^{0} (4x+5)dx - \int_{0}^{3} (5-x)dx - \frac{1}{4} \int_{-1}^{3} (x+5)dx$ = $\left[\frac{4x^{2}}{2} + 5\right]_{-1}^{0} + \left[5x - \frac{x^{2}}{2}\right]_{0}^{3} - \frac{1}{4} [x^{2} + 5x]_{-1}^{3}$ = $\left[0 - 2 + 5\right] + \left[15 - \frac{9}{2} - 0\right] - \frac{1}{4} \left[\frac{9}{2} + 15 - \frac{1}{2} + 5\right]$	
	y = 5 - x	

	$2 + \frac{21}{2} + \frac{1}{2}$	
	$=3+\frac{21}{2}-\frac{1}{4}.24$	
	$=-3+\frac{21}{2}=\frac{15}{2}$ sq units	
32.	∴ Required area of each slice of pizza	2
	$=\int_{0}^{4} x dx + \int_{4}^{4\sqrt{2}} \sqrt{\left(4\sqrt{2}\right)^{2} - x^{2}} dx$	
	$ x^{2} ^{4} + x \sqrt{(4/2)^{2} + 4\sqrt{2}} + 4\sqrt{2} + 1 x ^{4\sqrt{2}}$	
	$= \left \frac{x^2}{2}\right _0^4 + \left \frac{x}{2}\sqrt{\left(4\sqrt{2}\right)^2 - x^2} + \frac{4\sqrt{2}}{2}\sin^{-1}\frac{x}{4\sqrt{2}}\right _4^{4\sqrt{2}} \qquad $	
	T ÷	
	$=\frac{16}{2} + \left[\frac{4\sqrt{2}}{2} \cdot 0 + 16\sin^{-1}\frac{4\sqrt{2}}{4\sqrt{2}} - \frac{4}{2}\sqrt{\left(4\sqrt{2}\right)^2 - 16} - 16\sin^{-1}\frac{4}{4\sqrt{2}}\right]$	
	$=8 + \left[16.\frac{\pi}{2} - 2.\sqrt{16} - 16.\frac{\pi}{4}\right]$	
	$=8 + [8\pi - 8 - 4\pi]$	
	$=4\pi \ sq \ units$	
22		2
33.	We have, $y = 2\sqrt{x}$, $x = 0$ and $x = 1$	2
	Y↑ I I I I I I I I I I I I I I I I I I I	
	$y=2\sqrt{x}$	
	$(0, 0) \xrightarrow{O} (1, 0) \times X$	
	(0, 0) O (1, 0) X	
	(0, 0) O (1, 0) X	
	$(0, 0) \bigcirc (1, 0) \\ \downarrow \\ x = 1$	
	$(0, 0) O \qquad $	
	$(0, 0) O \qquad $	
	$(0, 0) O \qquad $	
	(0, 0)	
	$(0, 0) O \qquad $	
	$(0, 0) O \qquad $	