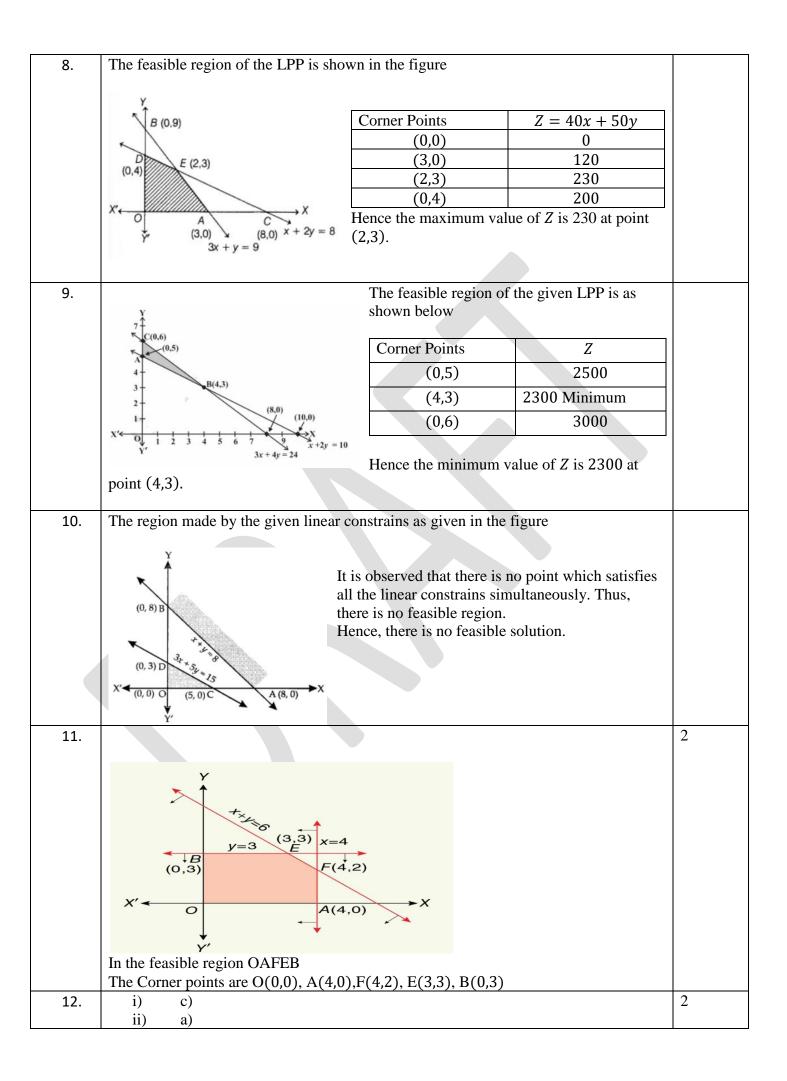

CHAPTER-12 LINEAR PROGRAMMING PROBLEMS 02 MARK TYPE QUESTIONS


	u L 2u < 120	
	$x + 2y \le 120$	
	$x + y \ge 60,$	
	$x - 2y > 0 \text{ and } x, y \ge 0$	-
8.	Solve the following LPP graphically:	2
	Maximize $Z = 40x + 50y$ subject to the constraints	
	$3x + y \le 9$	
	$x + 2y \le 8,$	
	$x, y \geq 0$	
9.	Solve the following linear programming problem graphically:	2
	Minimize $Z = 200 x + 500 y$ subject to the constraints:	
	$x + 2y \ge 10$	
	$3x + 4y \le 24$	
	$x \ge 0, y \ge 0$	
10.	Minimize $Z = 3x + 2y$ subject to the constraints	2
	$x + y \ge 8, 3x + 5y \le 15, x \ge 0, y \ge 0$	
11.	Find the Corner points of the following LPP:	2
	To maximize $Z = 2x + 5y$	-
	Subject to $0 \le x \le 4$,	
	$\begin{array}{c} \text{Subject to} 0 \leq x \leq 4, \\ 0 \leq y \leq 3, \end{array}$	
12.	$x + y \le 6$	2
12.	7	Z
	y ⁷ ₆ D(0, 6)	
	.s; 4 - B(0,4) P (2, 3)	
	C (4, 0) A (8, 0) 0 2 4 6 8 10	
	x-axis	
	i) Vertically shaded region is determined by the following constraints:	
	a) $x \ge 0, x + 2y \le 8, 3x + 2y \ge 12$	
	b) $x \ge 0, x + 2y \le 8, 3x + 2y \le 12$	
	c) $x \ge 0, x + 2y \ge 0, 3x + 2y \le 12$	
	d) None of the above	
	u) None of the above	
	ii) Horizontally shaded region is determined by the following constraints:	
	a) $y \ge 0, 3x + 2y \ge 12, x + 2y \le 8$	
	b) $y \ge 0, 3x + 2y \le 12, x + 2y \le 8$	
	c) $y \ge 0, 3x + 2y \ge 12, x + 2y \ge 8$	
	d) None of the above	
13.	To minimize $Z = x + 2y$	2
	Subject to $3x + 4y \le 12$	
	$5x + 3y \le 15$	
	$ \begin{array}{c} 3x + 3y \leq 13 \\ x, y \geq 0 \end{array} $	
	Solve the LPP.	
14.	A manufacturer of bags makes two types of bags A and B. In a factory maximum 48 hours	2
	of time per week is available to get the work done. It takes 2 hours to make a bag A and 3	

	hours to make a bag B. The profit per unit of A and B are Rs. 30 and Rs. 50 respectively. In	
	a week highest 15 units of bag A and 10 units of bag B are to be sold.	
	Find out the production of each type of bags such that the profit be maximum.	
15.	A soft drink plant has two bottling machines P and Q. It produces and sells 500ml and	2
	800ml bottles.	
	E E	
	233,6 x ø 6,8 cm	
	500 ml 800 ml	
	Weekly productions of the drink can not exceed 40,00,000 ml. and the market can absorb	
	4000 bottles of 500 ml and 1500 bottles of 800 ml per week. Profit on two types of bottles is	
	1 4000 bottles of 500 hill and 1500 bottles of 600 hill per week. I fort on two types of bottles is	
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP.	
16.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP.	2
16.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP.Maximize Z =5x+7y	2
16.	 15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize Z =5x+7y subject to the constraints 	2
16.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$,	2
16.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$,	2
16.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$	2
16.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$,	2
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$	
16. 17.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$	2
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize $Z = 3x+5y$ subject to constraints	
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize $Z = 3x+5y$ subject to constraints $-2 x+y \le 4$,	
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize $Z = 3x+5y$ subject to constraints	
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize $Z = 3x+5y$ subject to constraints $-2 x+y \le 4$, $x+y \ge 3$,	
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize $Z = 3x+5y$ subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$	
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize $Z = 3x+5y$ subject to constraints $-2 x+y \le 4$, $x+y \ge 3$,	
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize $Z = 3x+5y$ subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$	
17.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize $Z = 5x+7y$ subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize $Z = 3x+5y$ subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$ $x,y \ge 0$	2
	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize Z =5x+7y subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize Z =3x+5y subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$ $x,y \ge 0$ Maximize Z =8x+9y subject to the constraints	
17.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize Z =5x+7y subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize Z =3x+5y subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$ $x,y \ge 0$ Maximize Z =8x+9y subject to the constraints $2x + 3y \le 6$,	2
17.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize Z =5x+7y subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize Z =3x+5y subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$ $x,y \ge 0$ Maximize Z =8x+9y subject to the constraints $2x + 3y \le 6$, $3x - 2y \le 6$,	2
17.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize Z =5x+7y subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize Z =3x+5y subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$ $x,y \ge 0$ Maximize Z =8x+9y subject to the constraints $2x + 3y \le 6$, $3x - 2y \le 6$, y < 1,	2
17.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize Z =5x+7y subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize Z =3x+5y subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$ $x,y \ge 0$ Maximize Z =8x+9y subject to the constraints $2x + 3y \le 6$, $3x - 2y \le 6$,	2
17.	15 paise and 25 paise respectively. The planner wishes to maximize his profit to all the productions and marketing restrictions. Solve it as a LPP. Maximize Z =5x+7y subject to the constraints $x + y \le 4$, $3x+8y \le 24$, $10x+7y \le 35$ $x,y \ge 0$ Minimize Z =3x+5y subject to constraints $-2 x+y \le 4$, $x+y \ge 3$, $x-2y \le 2$ $x,y \ge 0$ Maximize Z =8x+9y subject to the constraints $2x + 3y \le 6$, $3x - 2y \le 6$, y < 1,	2

19.	Maximize $Z = 25x+15y$ subject to constraints $2x+y \le 12$, $3x+2y \le 20$, $x,y \ge 0$ is	2
20.	$\begin{array}{l} \text{Minimize Z=}4x + 6y \text{ subject to constraints} \\ 4x + 3y \geq 100, \\ 3x + 6y \geq 80, \\ \text{and } x, y \geq 0 \text{ is} \end{array}$	2

ANSWERS:

Q. NO	ANSWER	MARKS
1.	(0,8)(0,8)	2
2.	$x + 2y \le 10, x + y \ge 1, x - y \le 0, x, y \ge 0$	2
3.	1212	2
4.	320	2
5.		2
6.	Table of values for line $x + y = 4$ $\overline{x 0 4}$ $\overline{y 4 0}$ Feasible region of the LPP is as shown in the figure	
	Corner point of the LPP is (0,0), (0,4), (4,0) Corner Point $z = 3x + 4y$ (0,0) 0 (4,0) 12 (0,4) 16= M	
	Hence max value of Z is 16 at point (0,4).	
7.	The feasible region of the LPP is shown in the figure $ \begin{array}{c} \hline y \\ \hline$	

13.	OX and OY are two axes. \overrightarrow{AB} and \overrightarrow{BC} represent the straight lines $5x + 3y = 15$ and $3x + 4y = 12$ respectively. The convex set of the feasible region is OABC where the extreme points O(0,0), A(3,0), B($\frac{24}{11}$, $\frac{15}{11}$), C(0,3) Now, At O, $Z = 0 + 2 \times 0 = 0$ At A, $Z = 3 + 2 \times 0 = 3$ At B, $Z = \frac{24}{11} + 2 \times \frac{15}{11} = \frac{54}{11}$ At C, $Z = 0 + 2 \times 3 = 6$ Thus Min $Z = 0$ At O(0,0)	2
14.	Let, the number of bag A and bag B are x and y respectively. Then the profit is $30x + 50y$ From the conditions, we get $2x + 3y \le 48$, Since x and y can not be negative, then, $x, y \ge 0$ Thus the required problem is, Maximize, $Z = 30x + 50y$, Subject to $2x + 3y \le 48$ $x \le 15$, $y \le 10$ and $x, y \ge 0$	2
	$(0,16) \begin{array}{c} x \\ x \\ y \\$	
	$O(0,0)$ $D(15,0)$ (24,0) $^{\Lambda}$	
	In Cartesian Plane, we have drawn three straight lines such that $2x + 3y = 48$, $x = 15$, $y = 10$. The convex set of the feasible region is PQRSO. It is a bounded region and the corner points are O(0,0), P(0,10), Q(9,10), R(15,6), S(15,0).	
	Now, At O, $Z = 30 \times 0 + 50 \times 0 = 0$ At P, $Z = 30 \times 0 + 50 \times 10 = 500$ At Q, $Z = 30 \times 9 + 50 \times 10 = 770$ At R, $Z = 30 \times 15 + 50 \times 6 = 750$ At S, $Z = 30 \times 15 + 50 \times 0 = 450$	
	Thus Max Z= 770 at Q(9,10), Hence, the productions of Bag A and B are 9 and 10 respectively. And maximum profit is Rs. 770	

15.	Let, x and y be number of 500 ml and 800 ml bottles produced to get over all maximum profit. Then the profit is Rs. $(x \times \frac{15}{100} + y \times \frac{25}{100}) = \text{Rs.} (0.15x + 0.25y)$ (say) From the market condition, we get $x \le 4000$ $y \le 1500$ The amount of soft drinks is $(500x + 800y)$ ml Then $(500x + 800y) \le 40,00,000$ Thus the problem is, Maximize, $Z = 0.15x + 0.25y$ Subject to $(500x + 800y) \le 40,00,000$ $x \le 4000$ $y \le 1500$ and $x, y \ge 0$ Here from the equations $(500x + 800y) = 40,00,000, x = 2500, y = 7000$ we get the extreme points. They are $O(0,0), C(4000,0), A(4000,2500), B(5600,1500),$ D(0,1500) Now, At O, $Z = 0.15 \times 0 + 0.25 \times 0 = 0$ At C, $Z = 0.15 \times 4000 + 0.25 \times 0 = 600$ At A, $Z = 0.15 \times 4000 + 0.25 \times 2500 = 1225$	2
	At B, $Z = 0.15 \times 5600 + 0.25 \times 1500 = 1215$ At D, $Z = 0.15 \times 0 + 0.25 \times 1500 = 375$ Thus, Max $Z = 1225$ at $x = 4000$, $y = 2500$	
16.	Maximum value of $Z = 124/5$ at (8/5,12/5)	2
17.	Minimum value of $Z = 9$ at (3,0)	2
17.		2
18.	Maximum value of Z =22.62 at x= $30/13$ and y = $6/13$	
	Z = 60 at x = 4 and y = 4	2
20.	Z = 104 when x = 24 and y = 4/3	2