CHAPTER-15 STATISTICS 02 MARK TYPE QUESTIONS

		MARK	
Q. NO	QUESTION		
1.	An analysis of monthly wages paid to workers in two firms A and B, belonging to the same	2	
	industry, gives the following results :		
	Which firm, A or B, shows greater variability in individual wages?		
	FIRM A FIRM B		
	NUMBER OF WORKERS 897 468		
	MEAN AMOUNT OF WAGES(INR) 6345 6345		
	VARIANCE OF DISTRIBUTION OF WAGES 100 169		
2.	City A's daily average PM10 (particulate matter with a diameter of 10 micrometers or	2	
	smaller) levels for a week were: 50, 60, 45, 70, 55, 65, 75 (in µg/m³). City B's corresponding		
	PM10 levels were: 40, 80, 50, 60, 55, 85, 65 (in $\mu g/m^3$). Which city had greater variability in		
	PALO		
	Red block of		
	7um		
	PM10 levels?		
3.	A fitness trainer is conducting a study on the performance of two different workout	2	
	routines. The trainer tracks the number of repetitions completed by participants in each		
	routine. There are two sets of observations, each containing 20 participants. The first set		
	has a mean of 17 repetitions, and the second set has a mean of 22 repetitions. Surprisingly,		
	both sets have the same standard deviation of 5 repetitions.		
	118		
	What would be the standard deviation of the combined set obtained by merging the two		
	sets of observations?		
4.	A collection of 100 items was analyzed, and the statistical properties of the data were	2	
	observed. The mean of the items is 50, and the standard deviation is 4.		
	100		
	Calculate the sum of all the items and the sum of the squares of the items.		
5.	A set of data points were collected and analyzed. For this distribution, two pieces of	2	
	information were obtained: $(x - 5) = 3$ and $(x - 5)^2 = 43$. It is also known that the total		
	number of items in the dataset is 18.		

6.	If the mean and standard deviation of 100	observations a	re 50 and 4 re	spectively. Find the	2
	sum of all the observations and the sum of	their squares.			
7.	Let x_1 , x_2 , x_3 ,, x_n be n values of a variation	able X. If these	values are cha	anged to $x_1 + a$, $x_2 + a$	2
	a,, x $_n$ + a, where a \in R, show that the va				
8.	Find the mean, variance and standard devia				2
9.	Calculate the mean deviation about the me	edian of the ob	servations: 30	11, 2780, 3020,	2
	2354, 3541, 4150, 5000.				
10.	Find the mean deviation from the mean for	r the following	data:		2
	Classes 0-10 10-20 20-30 30-40 40-50 50-	60			
	Frequencies 6 8 14 16 4 2				
11.	The average marks scored by Ank	ur in certai	n number of	f tests are 84. He	2
	scored 100 marks in his last test. His				
	find the total number of tests he app	eared.			
12.	Find the variance and standard devia	tion for the	following da	nta: 57, 64, 43, 67,	2
	49, 59, 44, 47, 61, 59.				
13.	The mean weight of 150 students in	a certain cl	ass is 60 kilo	grams. The mean	2
	weight of boys in the class is 70 kilog	grams and th	hat of the gir	ls is 55 kilograms,	
	then find the number of boys and gir	ls of the clas	s.		
14.	The mean of 100 observations is 50 a	and their sta	ndard deviat	ion is 5. Then find	2
	the sum of squares of all observation	IS.			
15.	Mean of 10 items is 17. If an observa	ition 21 is re	placed with	12, then what will	2
	be the new mean?				
16.	An analysis of monthly wages paid to the w	orkers of two	firms A and B	belonging to the	2
	same industry gives the following results :				
			1	7	
		Firm A	Firm B		
	No.of wages earners	1000	1200		
	Mean of monthly wages	Rs.2800	Rs.2800		
	Variance of the distribution of wages	100	169		
	In which firm A or B is there greater variab	ility in individ	ual wages ?	-	
17.	Find the mean and variance of first n natura	al numbers.			2
	Calculate the mean deviation about the med	lion of the foll	wing obcomulat	•	2

19.	If the mean and standard deviation of 100 observations are 50 and 4 respectively. Find the	2
	sum of all the observations and the sum of their squares.	
20.	If for a distribution of 18 observations $\sum (x-5) = 3$ and $\sum (x-5)^2 = 43$	2
	Find the Mean and Standard Deviation.	

Q. NO	ANSWER	MARKS
1.	Variance of the distribution of wages in firm A = 100	2
	\therefore Standard deviation of the distribution of wages in firm	
	A ((σ1) = √100 =10	
	Variance of the distribution of wages in firm = 169	
	\therefore Standard deviation of the distribution of wages in firm	
	A ((σ2)=V169= 13	
	The mean of monthly wages of both the firms is same i.e., 6345. Therefore, the firm	
	with greater standard deviation will have more variability.	
	Thus, firm B has greater variability in the individual wages.	
2.	Variability in data can be measured using measures of dispersion such as the range,	2
	variance, and standard deviation. In this case, we need to compare the variability of	
	PM10 levels in City A and City B.	
	City A's PM10 levels: 50, 60, 45, 70, 55, 65, 75	
	City B's PM10 levels: 40, 80, 50, 60, 55, 85, 65	
	To determine which city has greater variability, we can look at the range of PM10	
	levels in each city. The range is the difference between the maximum and minimum	
	values.	
	For City A:	
	Range = 75 (max) - 45 (min) = 30	
	For City B:	
	Range = 85 (max) - 40 (min) = 45	
	City B has a larger range of PM10 levels, indicating greater variability in its data.	
	Therefore, the correct answer is City B.	
3.	To determine the standard deviation of the combined set, we need to consider the	2
	concept of weighted averages and their effect on standard deviation.	
	Calculate the weighted average of the means:	
	Weighted Mean = (Number of observations in Set 1 * Mean of Set 1 + Number of	
	observations in Set 2 * Mean of Set 2) / Total Number of Observations	
	Weighted Mean = (20 * 17 + 20 * 22) / 40 = 19.5.	

ANSWERS:

	Calculate the variance of the combined set using the formula:	
	Variance = (Number of observations in Set 1 * Variance of Set 1 + Number of	
	observations in Set 2 * Variance of Set 2) / Total Number of Observations	
	Variance = (20 * 5^2 + 20 * 5^2) / 40 = 25.	
	Calculate the standard deviation of the combined set:	
	Standard Deviation = $\sqrt{Variance} = \sqrt{25} = 5$.	
	Therefore, the standard deviation of the combined set obtained by merging the two	
	sets of observations would be 5	
4.	To solve this, we can use the formulas for the mean and standard deviation:	2
	Sum of all items = Mean × Number of items = 50 × 100 = 5000.	
	Sum of squares of items = Variance × (Number of items - 1) + Mean^2 × Number of	
	items = (4^2) × (100 - 1) + 50^2 × 100 = 159600.	
	So, the sum of all the items is 5000, and the sum of the squares of the items is	
	159600.	
5.	Given that (x - 5) = 3, we can solve for x:	2
	x = 3 + 5 = 8.	
	Now, let's calculate the mean and standard deviation:	
	Mean:	
	The sum of all values (x) can be calculated by multiplying the mean by the number	
	of items: Sum = Mean \times Number of items = $8 \times 18 = 144$.	
	Variance:	
	Variance = [(Sum of squares of all values) - (Sum of all values) ² / Number of items]	
	/ (Number of items - 1)	
	Plugging in the values:	
	Variance = $[(43) - (144^2 / 18)] / 17 \approx 9.$	
	Standard Deviation:	
	Standard Deviation = $\sqrt{Variance} = \sqrt{9} = 3$.	
	So, the mean of the distribution is 8 and the standard deviation is 3.	
6.	Sum of all the observations is 5000	2
	Sum of their squares is 251600	
7.	Let $u_i = x_i + a$, $i = 1, 2,, n$ be the n values of variable U . Then,	2

	n n (n) (n)	
	$\bar{U} = \frac{1}{n} \sum_{i=1}^{n} u_i = \frac{1}{n} \sum_{i=1}^{n} (x_i + a) = \frac{1}{n} \left\{ \sum_{i=1}^{n} x_i + na \right\} = \frac{1}{n} \sum_{i=1}^{n} x_i + a = \bar{X} + a$	
	$\therefore u_{i} - \bar{U} = (x_{i} + a) - (\bar{X} + a) = x_{i} - \bar{X}, i = 1, 2,, n$	
	$\Rightarrow \sum_{i=1}^{n} (u_i - \bar{U}) = \sum_{i=1}^{n} (x_i - \bar{X})$	
	$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} (u_i - \bar{U})^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2$	
	$ \begin{array}{l} n \sum_{i=1}^{n} & n \sum_{i=1}^{n} \\ \Rightarrow \operatorname{Var}(U) = \operatorname{Var}(X) \end{array} $	
8.	Mean=7, Variance=23.33, Standard Deviation=4.8	2
9.	M. D. (M) = 649.428	2
10.	Mean =27 M.D. (Mean)= 10.24	2
11.	$x_1 + x_2 + x_3 + + x_n = 84x$	2
	$\frac{84x+100}{x+1}$ = 86	
	x=7	
12	Total number of test 7+1=8	2
12.	$Mean(\bar{x}) = \frac{57+64+43+67+49+59+61+59+44+47}{10} = \frac{550}{10} = 55$	2
	Variance (σ^2)	
	$=\frac{\sum (x_i - \bar{x})^2}{2}$	
	$2^{2^{n}} + 9^{2} + 12^{2} + 12^{2} + 6^{2} + 4^{2} + 6^{2} + 4^{2} + 11^{2} + 8^{2}$	
	=10	
	$=\frac{662}{1000}$	
	$=\frac{10}{10}$	
12	Standard deviation(σ)= $\sqrt{\sigma^2} = \sqrt{66.2} = 8.13$	2
13.	Total students in class =150	2
	mean weight=60kg	
	total weight =150×60=9000kg Let the total number of boys =x	
	mean weight of boys =70kg	
	total weight of boys=70xkg	
	total number of girls = total students - no. of boys =150-x	
	mean weight of girls=55kg	
	total weight of girls =55×(150-x)=55×150-55x=(8250-55x)kg	
	Total weight = weight of boys + weight of girls	
	9000=70x+(8250-55x)	
	9000=70x+8250-55x	
	9000-8250=70x-55x	
	750=15x	
	x=15750	
	x=50	

	So number of boys =50		
	number of girls =150–50=100		
14.	$\sum x_i^2 = n \{ \sigma^2 + (\bar{x})^2 \} = 100 (50^2 + 5^2)$	=252500	2
15.	Original sum of all the 10 items		
	=(mean x number of items)		2
	=17 × 10		
	=170		
	New sum=170 – 21 + 12 =161		
	New mean = $161/10 = 16.1$		
16.		in both the firms is some i a Rs 2800	2
	We observe that the average monthly wages		
	Therefore, the firm with greater variance wil	have more variability. Thus, firm B has	
	greater variability in individual wages.		
17.	First n natural numbers are = 1, 2, 3,	, n	2
	Mean $\overline{x} = \frac{(1+2+3+\dots+n)}{n} = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{(n+1)}{2}$		
	Variance $\sigma^2 = \frac{\Sigma x^2}{n} - \overline{x}^2 = \frac{\Sigma n^2}{n} - \left\{\frac{(n+1)}{2}\right\}^2 =$	$n(n+2)(2n+1)$ $(n+1)^2$ (n^2-1)	
	Variance $\sigma^2 = \frac{2\pi}{n} - \overline{x}^2 = \frac{2\pi}{n} - \left\{\frac{(\pi+1)}{2}\right\} =$	$\frac{n(n+2)(2n+1)}{6n} - \frac{(n+1)}{4} = \frac{(n-1)}{12}$	
18.	Arranging the observations in ascending order 70	er: 34, 38, 42, 44, 47, 48, 53, 55, 63,	2
	Median M = $\frac{47+48}{2}$ = 47.5		
	Calculation of mean deviation about the	madian	
	Calculation of mean deviation about the	ineuran .	
	x	d = x-M	
	34	13.5	
	38	9.5	
		5.5	
	44	3.5	
	48	0.5	
	53	5.5	
	55	7.5	
	63	15.5	
	70	$\frac{22.5}{\Sigma hr} = 0.4$	
	$\Sigma x - M = 84$	$\Sigma x-M =84$	
	Mean Deviation $=\frac{\Sigma x-M }{n} = \frac{84}{10} = 8.4$		
19.	Let $x_{1,x_{2,}}$ x_{100} be 100 observations and	d their mean $-\overline{x}$ and standard deviation	2
19.	Let x_1, x_2, \dots, x_{100} be 100 observations at $= \sigma$	α then mean $-\lambda$ and standard deviation	2
	Mean $\bar{x} = \frac{\Sigma x}{2}$ $\sigma^2 = \frac{\Sigma x^2}{2}$	$\frac{2}{2} - \bar{x}^2$	
	Mean $\bar{x} = \frac{\Sigma x}{n}$ $50 = \frac{\Sigma x}{100}$ $\sigma^2 = \frac{\Sigma x^2}{n}$ $4^2 = \frac{\Sigma x^2}{100}$		
	$ \qquad 30 - \frac{100}{100} \qquad 4^2 = \frac{3x}{100}$		
	1600 = 1	$\Sigma x^2 - 250000$	
	Sum of Solo	their squares $\Sigma x^2 = 251600$	

20.	$\sum_{i=1}^{18} (x-5) = 3$ $\sum_{i=1}^{18} x - \sum_{i=1}^{18} 5 = 3$ $\sum_{i=1}^{18} x - 5 \times 18 = 3$ $\sum_{i=1}^{18} x = 93$ Mean = $\frac{\sum x}{n} = \frac{93}{18} = 5.17$	$\sum_{i=1}^{18} (x-5)^2 = 43$ $\sum_{i=1}^{18} x^2 - 10 \sum_{i=1}^{18} x + \sum_{i=1}^{18} 25 = 43$ $\sum_{i=1}^{18} x^2 - 10 \times 93 + 25 \times 18 = 43$ $\sum_{i=1}^{18} x^2 = 523$	2
	$n = \frac{18}{18} - 5.17$	Standard Deviation = $\sqrt{\frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2}$ = $\sqrt{\frac{523}{18} - \left(\frac{93}{18}\right)^2}$ 1.536	