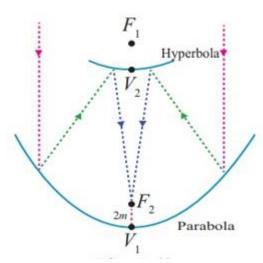

## CHAPTER-11 CONIC SECTIONS

## 03 MARK TYPE QUESTIONS

| Q. NO | QUESTION                                                                                                | MARK |
|-------|---------------------------------------------------------------------------------------------------------|------|
| 1.    | The maximum and minimum distances of the Earth from the Sun respectively are 152 ×10 <sup>6</sup>       | 3    |
|       | km and 94.5×10 <sup>6</sup> km. The Sun is at one focus of the elliptical orbit. Find the distance from |      |
|       | the Sun to the other focus.                                                                             |      |
|       | Earth                                                                                                   |      |
|       | Editii 1                                                                                                |      |
|       | Sun                                                                                                     |      |
|       | S' S                                                                                                    |      |
|       |                                                                                                         |      |
|       | Fig. 5.56                                                                                               |      |
|       |                                                                                                         |      |
| 2.    | A concrete bridge is designed as a parabolic arch. The road over bridge is 40m long and the             | 3    |
|       | maximum height of the arch is 15m. Write the equation of the parabolic arch.                            |      |
|       |                                                                                                         |      |
|       | **                                                                                                      |      |
|       | ** x                                                                                                    |      |
|       | 15                                                                                                      |      |
|       | 40                                                                                                      |      |
|       | / <sub>(-20,-15)</sub> (20,-15)\                                                                        |      |
|       | Fig. 5.57                                                                                               |      |
| 3.    | The parabolic communication antenna has a focus at 2m distance from the vertex of the                   | 3    |
|       | antenna. Find the width of the antenna 3m from the vertex.                                              |      |
|       |                                                                                                         |      |
| 4.    | Certain telescopes contain both parabolic mirror and a hyperbolic mirror. In the telescope              | 3    |
|       | shown in figure the parabola and hyperbola share focus $F_1$ which is $14m$ above the vertex of         |      |
|       | the parabola. The hyperbola's second focus $F_2$ is $2m$ above the parabola's vertex. The vertex        |      |
|       | of the hyperbolic mirror is $1m$ below $F_1$ . Position a coordinate system with the origin at the      |      |
|       | center of the hyperbola and with the foci on the $y$ -axis. Then find the equation of the               |      |
|       | hyperbola.                                                                                              |      |
|       | $F_1$                                                                                                   |      |
|       | Hyperbola                                                                                               |      |
|       | $\sqrt{V_2}$                                                                                            |      |
|       |                                                                                                         |      |
|       |                                                                                                         |      |
|       |                                                                                                         |      |
|       | $F_2$                                                                                                   |      |
|       | Parabola Parabola                                                                                       |      |
|       |                                                                                                         |      |
| 5.    | A semielliptical archway over a one-way road has a height of $3m$ and a width of $12m$ . The            | 3    |
|       | truck has a width of 3m and a height of 2.7m. Will the truck clear the opening of archway?              |      |






|     | and 'b' on the coordinate axis.                     |   |
|-----|-----------------------------------------------------|---|
| 20. | Show that the equation $x^2+y^2-6x+4y-36=0$         | 3 |
|     | represents a circle, also find its centre & radius? |   |



## **ANSWERS:**

| Q. NO | ANSWER                                                                                | MARKS |
|-------|---------------------------------------------------------------------------------------|-------|
| 1.    | $AS = 94.5 \times 10^6 \text{ km}$ , $SA' = 152 \times 10^6 \text{ km}$               | 1+1+1 |
|       | $a + c = 152 \times 10^6$                                                             |       |
|       | $a - c = 94.5 \times 10^6$                                                            |       |
|       | Subtracting $2c = 57.5 \times 10^6 = 575 \times 10^5 \text{ km}$                      |       |
| 2.    | From the graph the vertex is at (0, 0) and the parabola is open down                  | 1+1+1 |
|       | Equation of the parabola is $x^2 = -4ay$                                              |       |
|       | (-20, -15) and $(20, -15)$ lie on the parabola                                        |       |
|       | $20^2 = -4a(-15)$                                                                     |       |
|       | $4a = \frac{400}{15}$                                                                 |       |
|       | $x^2 = \frac{-80}{3} \times y$                                                        |       |
|       | $x^2 = \frac{1}{3} \times y$                                                          |       |
|       | Therefore equation is $3x^2 = -80y$                                                   |       |
|       | 3. The parabolic communication antenna has a focus at 2m distance from the vertex of  |       |
|       | the antenna. Find the width of the antenna 3m from the vertex                         |       |
| 3.    | Let the parabola be $y^2 = 4ax$ .                                                     | 1+1+1 |
|       | Since focus is 2m from the vertex a = 2                                               |       |
|       | Equation of the parabola is $y^2 = 8x$                                                |       |
|       | S(2,0) x<br>Fig. 5.58                                                                 |       |
|       | Let P be a point on the parabola whose $x$ -coordinate is 3m from the vertex P (3, y) |       |
|       | $Y^2 = 8 \times 3$                                                                    |       |
|       | $y = \sqrt{8x3} = 2\sqrt{6}$                                                          |       |
|       | The width of the antenna 3m from the vertex is 4V6                                    |       |
| 4.    | Let $V_1$ be the vertex of the parabola and $V_2$ be the vertex of the hyperbola.     | 3     |
|       | $\overline{F_1F_2}$ = 14 - 2 = 12m, 2c = 12, c = 6                                    |       |



The distance of center to the vertex of the hyperbola is a = 6 - 1 = 5

$$b^2=c^2-\alpha^2$$

Therefore the equation of the hyperbola is  $y^2/25 - x^2/11 = 1$ 

$$\frac{y^2}{25} - \frac{x^2}{11} = 1$$

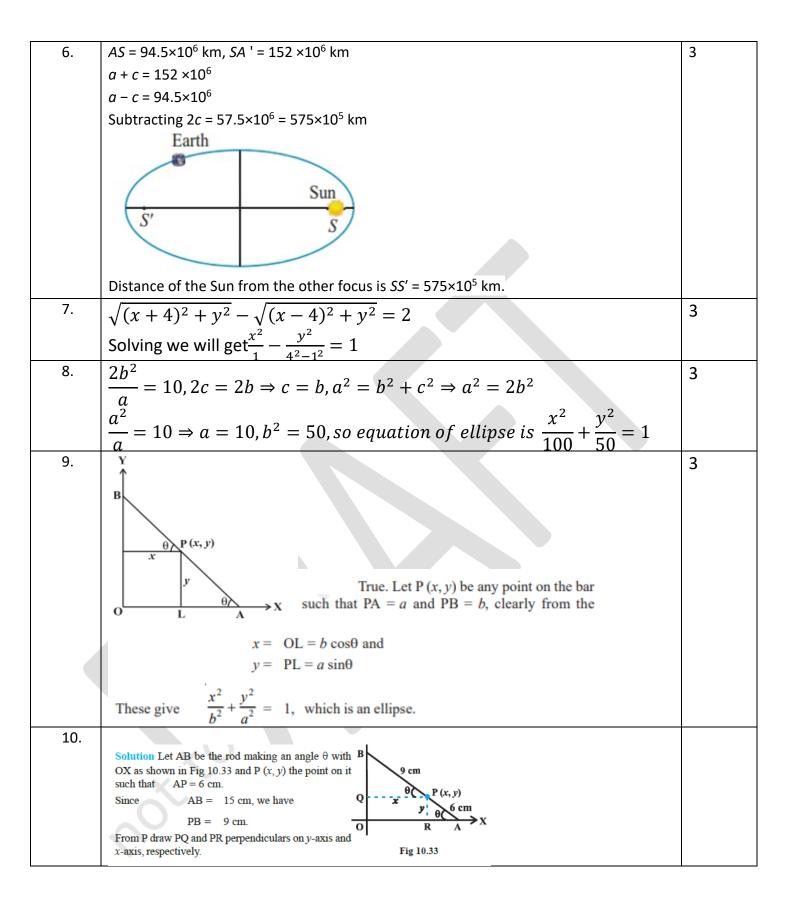
5. Since the truck's width is 3m, to determine the clearance, we must find the height of the archway 1.5m from the center. If this height is 2.7m or less the truck will not clear the archway.

From the diagram a = 6 and b = 3 yielding the equation of ellipse as  $\frac{x^2}{6^2} + \frac{y^2}{3^2} = 1$ 

The edge of the 3m wide truck corresponds to x = 1.5m from center We will find the height of the archway 1.5m from the center by substituting x = 1.5 and solving for y

$$\frac{\left(\frac{3}{2}\right)^2}{36} + \frac{y^2}{9} = 1$$

$$y^2 = 9\left(1 - \frac{9}{144}\right)$$


$$= \frac{9(135)}{144} = \frac{135}{16}$$

$$y = \frac{\sqrt{135}}{4}$$

$$= \frac{11.62}{4}$$

$$= 2.90$$

Thus the height of arch way 1.5m from the center is approximately 2.90m. Since the truck's height is 2.7m, the truck will clear the archway.



|     | From $\triangle$ PBQ, $\cos \theta = \frac{x}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|     | From $\triangle$ PRA, $\sin \theta = \frac{y}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | Since $\cos^2 \theta + \sin^2 \theta = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     | $\left(\frac{x}{9}\right)^2 + \left(\frac{y}{6}\right)^2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | or $\frac{x^2}{81} + \frac{y^2}{36} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|     | Thus the locus of P is an ellipse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 11. | Let the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Let the mid point of chord of contact be $(\mathbf{b}, \mathbf{k})$ Equation of chord when mid point is given is $T = S'$ $\frac{\mathbf{x}\mathbf{x}'}{\mathbf{a}^2} + \frac{\mathbf{y}\mathbf{y}'}{\mathbf{b}^2} = \frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2}$ $\frac{\mathbf{x}\mathbf{h}}{\mathbf{a}^2} + \frac{\mathbf{y}\mathbf{k}}{\mathbf{b}^2} = \frac{\mathbf{h}^2}{\mathbf{a}^2} + \frac{\mathbf{k}^2}{\mathbf{b}^2}$ It passes through $(0, \mathbf{b})$ $0 + \frac{\mathbf{b}\mathbf{k}}{\mathbf{b}^2} = \frac{\mathbf{h}^2}{\mathbf{a}^2} + \frac{\mathbf{k}^2}{\mathbf{b}^2}$ $\frac{\mathbf{h}^2}{\mathbf{a}^2} + \frac{\mathbf{k}^2}{\mathbf{b}^2} = \frac{\mathbf{k}}{\mathbf{b}}$ So the required locus is $\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} = \frac{\mathbf{y}}{\mathbf{b}}$ The equation of the parabola takes the form $x^2 = 4ay$ . Since it passes through $\left(6, \frac{3}{100}\right), \text{ we have } \left(6\right)^2 = 4a\left(\frac{3}{100}\right), \text{ i.e., } a = \frac{36 \times 100}{12} = 300 \text{ m}$ Let AB be the deflection of the beam which is $\frac{1}{100}$ m. Coordinates of B are $(x, \frac{2}{100})$ . |   |
|     | Therefore $x^2 = 4 \times 300 \times \frac{2}{100} = 24$ i.e. $x = \sqrt{24} = 2\sqrt{6} \text{ metres}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 12. | i) a=18 ,b = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 |
|     | $x^2/324 + y^2/81 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | ii)Using above equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|     | x=6 y=?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|     | $36+4y^2=324$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 |
| 13. | I) A parabolic reflection with diameter PR = 20 cm and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 |
|     | OQ = 5c cm is shown below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|     | Here, vertex of the parabola is (0,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|     | Let the focus be S (a, 0)<br>Let the equation of the parabola be $y \wedge 2 = 4ax$ . Now, PR = 2c cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|     | Rightarrow PQ = 10 cm Since it lies on the parabola sqrt = 4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|     | Also, $OQ = 5$ cm Point P is $(5, 10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | Also, OQ - 3 cm Folitt F is (3, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |

|     | 10 ^ 2 = 4 (a) 5 100 = 20a a = 5<br>Focus is S(5, 0) which is same as point Q<br>ii) diameter is 12.0 then I will be its depth<br>224/9<br>iii) If depth is 2 m<br>then (2,y) lies on parabola<br>$Y^2=81/56$<br>$Y=9/2\sqrt{7}$ |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 14. | i) $a = 20,b = 6$<br>$x^2/400+ y^2/36 = 1$<br>Required latus rectum= $2b^2/a = 3.6m$<br>ii) $x^2/400+ y^2/36 = 1$<br>Let $(p, 2)$ lie on ellipse.<br>$P^2/400+4/36=1$<br>$P=40\sqrt{2}/3m$ .                                     | 3 |
| 15. | Let the circle cuts X –axis at point A and Y – axis at point B.                                                                                                                                                                  | 3 |
|     | Since the circle makes intercepts as a and b on the co-ordinate axes.                                                                                                                                                            |   |
|     | Y - axis  B(0,b)  b  O  A(a,0) <sub>X-axis</sub>                                                                                                                                                                                 |   |
|     | Therefore, co-ordinate of points A and B are (a, 0) and (0, b)                                                                                                                                                                   |   |
|     | Since angle in semi circle is $90^{\circ}$                                                                                                                                                                                       |   |
|     | Equation of circle is $(x - a)(x - 0) + (y - 0)(y - b)$                                                                                                                                                                          |   |
|     | Or, $x^2 + y^2 - ax - by = 0$                                                                                                                                                                                                    |   |
| 16  |                                                                                                                                                                                                                                  | 2 |
| 16. | The vertices ( $\pm$ 13,0) lies on X –axis, therefore the equation will be of the form                                                                                                                                           | 3 |
|     | $x^2/a^2 + y^2/b^2 = 1$                                                                                                                                                                                                          |   |
|     | Now vertices = $(\pm 13,0) = (\pm a,0)$                                                                                                                                                                                          |   |

|     | So, a = 13                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | So, a = 13                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|     | Now foci = $(\pm 5,0) = (\pm ae,0)$                                                                                                                                                                                                                                                                                                                                                                                     |   |
|     | So, ae = 5                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|     | Now $b^2 = a^2(1 - e^2) = 169 - 25 = 144$                                                                                                                                                                                                                                                                                                                                                                               |   |
|     | So, $x^2/169 + y^2/144 = 1$                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 17. | Given, $2x^2 - 3y^2 = 5$                                                                                                                                                                                                                                                                                                                                                                                                | 3 |
|     | So, $x^2/(5/2) - y^2/(5/3) = 1$                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | Here, $a^2 = 5/2$ , $b^2 = 5/3$                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | So, $b^2 = a^2(e^2 - 1)$                                                                                                                                                                                                                                                                                                                                                                                                |   |
|     | $5/3 = 5/2(e^2 - 1)$                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|     | So, $e^2 = 5/3$                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | Foci = $(\pm ae, 0) = (\pm \frac{5}{\sqrt{6}}, 0)$                                                                                                                                                                                                                                                                                                                                                                      |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 18. | Given that, the circle equation is $2x^2 + 2y^2 - x = 0$                                                                                                                                                                                                                                                                                                                                                                | 3 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | This can be written as:                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|     | This can be written as:<br>$\Rightarrow (2x^2-x) + y^2 = 0$                                                                                                                                                                                                                                                                                                                                                             |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|     | $\Rightarrow (2x^2-x) + y^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                        |   |
|     | $\Rightarrow (2x^{2}-x) + y^{2} = 0$ $\Rightarrow 2\{[x^{2} - (x/2)] + y^{2}\} = 0$                                                                                                                                                                                                                                                                                                                                     |   |
|     | $\Rightarrow (2x^{2}-x) + y^{2} = 0$ $\Rightarrow 2\{[x^{2} - (x/2)] + y^{2}\} = 0$ $\Rightarrow \{x^{2} - 2x(\frac{1}{4}) + (\frac{1}{4})^{2}\} + y^{2} - (\frac{1}{4})^{2} = 0$                                                                                                                                                                                                                                       |   |
|     | ⇒ $(2x^2-x) + y^2 = 0$<br>⇒ $2\{[x^2 - (x/2)] + y^2\} = 0$<br>⇒ $\{x^2 - 2x(\frac{1}{4}) + (\frac{1}{4})^2\} + y^2 - (\frac{1}{4})^2 = 0$<br>Now, simplify the above form, we get                                                                                                                                                                                                                                       |   |
|     | $\Rightarrow (2x^{2}-x) + y^{2} = 0$ $\Rightarrow 2\{[x^{2} - (x/2)] + y^{2}\} = 0$ $\Rightarrow \{x^{2} - 2x(\frac{1}{4}) + (\frac{1}{4})^{2}\} + y^{2} - (\frac{1}{4})^{2} = 0$ Now, simplify the above form, we get $\Rightarrow (x - (\frac{1}{4}))^{2} + (y - 0)^{2} = (\frac{1}{4})^{2}$                                                                                                                          |   |
|     | ⇒ $(2x^2-x) + y^2 = 0$<br>⇒ $2\{[x^2 - (x/2)] + y^2\} = 0$<br>⇒ $\{x^2 - 2x(\frac{1}{4}) + (\frac{1}{4})^2\} + y^2 - (\frac{1}{4})^2 = 0$<br>Now, simplify the above form, we get<br>⇒ $(x - (\frac{1}{4}))^2 + (y - 0)^2 = (\frac{1}{4})^2$<br>The above equation is of the form $(x - h)^2 + (y - k)^2 = r^2$                                                                                                         |   |
|     | $\Rightarrow (2x^2-x) + y^2 = 0$ $\Rightarrow 2\{[x^2 - (x/2)] + y^2\} = 0$ $\Rightarrow \{x^2 - 2x(\frac{1}{4}) + (\frac{1}{4})^2\} + y^2 - (\frac{1}{4})^2 = 0$ Now, simplify the above form, we get $\Rightarrow (x - (\frac{1}{4}))^2 + (y - 0)^2 = (\frac{1}{4})^2$ The above equation is of the form $(x - h)^2 + (y - k)^2 = r^2$ Therefore, by comparing the general form and the equation obtained, we can say |   |
| 19. | $\Rightarrow (2x^2-x) + y^2 = 0$ $\Rightarrow 2\{[x^2 - (x/2)] + y^2\} = 0$ $\Rightarrow \{x^2 - 2x(\frac{1}{4}) + (\frac{1}{4})^2\} + y^2 - (\frac{1}{4})^2 = 0$ Now, simplify the above form, we get $\Rightarrow (x - (\frac{1}{4}))^2 + (y - 0)^2 = (\frac{1}{4})^2$ The above equation is of the form $(x - h)^2 + (y - k)^2 = r^2$ Therefore, by comparing the general form and the equation obtained, we can say | 3 |

|     | $r^{2} = \frac{a^{2}}{4} + \frac{b^{2}}{4}$ Now, equation of circle is given by $(x - h)^{2} + (y - k)^{2} = r^{2}$ $(x - a/2)^{2} + (y - b/2)^{2} = r^{2}$ $x^{2} + y^{2} - ax - by = 0$ |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 20. | It is of the form $x^2+y^2+2gx+2fy+c=0$                                                                                                                                                   | 3 |
|     |                                                                                                                                                                                           |   |
|     | Where 2g =-6, 2f=4 & c=-36                                                                                                                                                                |   |
|     | $\therefore$ g =-3, f=2 & c=-36                                                                                                                                                           |   |
|     | Thus, center of the circle is $(-g,-f)=(3,-2)$                                                                                                                                            |   |
|     | Radius of the circle is $\sqrt{g^2 + f^2 - c} = \sqrt{9 + 4 + 36}$                                                                                                                        |   |
|     | =7units                                                                                                                                                                                   |   |