CHAPTER-2 RELATIONS & FUNCTIONS 03 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Redefine the function: $f(x) = x - 1 - x + 6 $. Write its domain also.	3
2.	Find the domain and range of the real function $f(x) = x/1+x^2$	3
3.	What is the fundamental difference between a relation and function? Is every	3
	relation a function?	
4.	Redefine the function: $f(x) = x - 1 - x + 6 $. Write its domain also.	3
5.	Let f and g be two real valued functions, defined by $f(x) = (x + 1)$ and $g(x) = (2x - 3)$.	3
	Find	
	$i)f + g$ $ii)f - g$ $iii)\frac{f}{g}$	
6.	If $f: R \to R$ is defined by $f(x) = 3x + x $, Prove that	3
	f(2x) - f(-x) - 6x = f(x)	

ANSWERS:

r		
Q. NO	ANSWER	MARKS
1.	Given function is $f(x) = x - 1 - x + 6 $	3
	Redefine of the function is:	
	f(x)=-x+1+x+6,x≤-6	
	-x+1-x-6,-6≤x<1	
	x-1-x-6,x≥1	
	$=7,X \ge -0$	
	-2X-3,-05X<1	
	$-7, X \ge 1$ The domain of this function is P	
2	Given real function is $f(x) = x/1+x^2$	2
2.		5
	$1 + x^2 \neq 0$	
	X²≠ -1	
	Domain : x ∈ R	
	Let $f(x) = y$	
	$y = x/1 + x^2$	
	\Rightarrow x = y(1 + x ²)	
	\Rightarrow yx ² - x + y = 0	
	This is quadratic equation with real roots.	
	$(1)^2 - A(y)(y) > 0$	
	$(-1) - 4(y)(y) \ge 0$	
	$1 - 4y^2 > 0$	
	$\Rightarrow 4v^2 < 1$	
	\Rightarrow y ² \leq 1/4	
	$\Rightarrow -\frac{1}{2} \le v \le \frac{1}{2}$	

	$\Rightarrow -1/2 \leq f(x) \leq \frac{1}{2}$	
	Range = $[-\frac{1}{2}, \frac{1}{2}]$	
3.	Every function is a relation, but every relation need not be a function.	3
	A relation f from A to B is called a function if	
	(i) Dom(f) = A	
	(ii) no two different ordered pairs in f have the same first component.	
	For. e.g.	
	Let A = {a, b, c, d} and B = {1, 2, 3, 4, 5}	
	Some relations f, g and h are defined as follows: f = {(a, 1), (b, 2), (c, 3), (d, 4)} g = {(a, 1), (b, 3), (c, 5)}	
	h = {(a, 1), (b, 2), (b, 3), (c, 4), (d, 5)}	
	In the relation f, f={(a,1),(b,2),(c,3),(d,4)}	
	(i) Dom (f) = A	
	(ii) All first components are different.	
	So, f is a function.	
	In the relation g,	
	(i) Dom (g) ≠ A	
	So, the condition is not satisfied. Thus, g is not a function.	
	In the relation h, h={(a,1),(b,2),(b,3),(c,4),(d,5)}	
	(i) Dom (h) = A	
	(i) Two first components are the same, i.e. b has two different images.	

		So, h is not a function.	
		No, every relation is not a function.	
	4.	Given function is $f(x) = x - 1 - x + 6 $	
		Redefine of the function is:	
		$\begin{pmatrix} -x + 1 + x + 6, x \le -6 \\ x + 1 - x - 6 \\ x \le -6 \end{pmatrix}$	
		$f(x) = \begin{cases} -x + 1 - x - 6, \ -6 \le x \le 1 \\ x - 1 - x - 6, \ x \ge 1 \end{cases}$	
		$(x-1-x-0, x \ge 1)$	
		(7, x < -6)	
		$= \{-2x - 5, -6 \le x < 1\}$	
		$(-7, x \ge 1)$	
		The domain of this function is <i>R</i>	
	5.	Given, $f(x) = (x + 1)$ and $g(x) = (2x - 3)$	
		i) $(f+g)(x) = f(x) + g(x)$	
		= (x + 1) + (2x - 3)	
		=(3x-2)	
		$\Rightarrow (f+g)(x) = (3x-2)$	
		ii) $(f - a)(x) - f(x) - a(x)$	
		(y - y)(x) = f(x) - g(x) = $(x + 1) - (2x - 3)$	
		$\Rightarrow (f-q)(x) = (4-x)$	
		0 37(4) (- 4)	
		iii) $\left(\frac{f}{f}\right)(x) = \frac{f(x)}{x+1} = \frac{x+1}{x+1}$	
-	6	$\frac{g}{g(x)} = \frac{g(x)}{g(x)} = \frac{g(x)}{2x-3}$	
	6.	f(x) = 3x + x f(2x) = (2(2x) + 2x) = (x + 2 x)	
		f(2x) = (3(2x) + 2x) = 6x + 2 x f(-x) = (2(-x) + -x) = -2x + x	
		f(-x) = (3(-x) + -x) = -3x + x	
		f(2r) - f(-r) - 6r = (6r + 2 r) - (-3r + r) - 6r	
		= 6r + 2 r + 3r - r - 6r	
		= 3x + x = f(x)	
		Hence proved.	
			-