CHAPTER-8

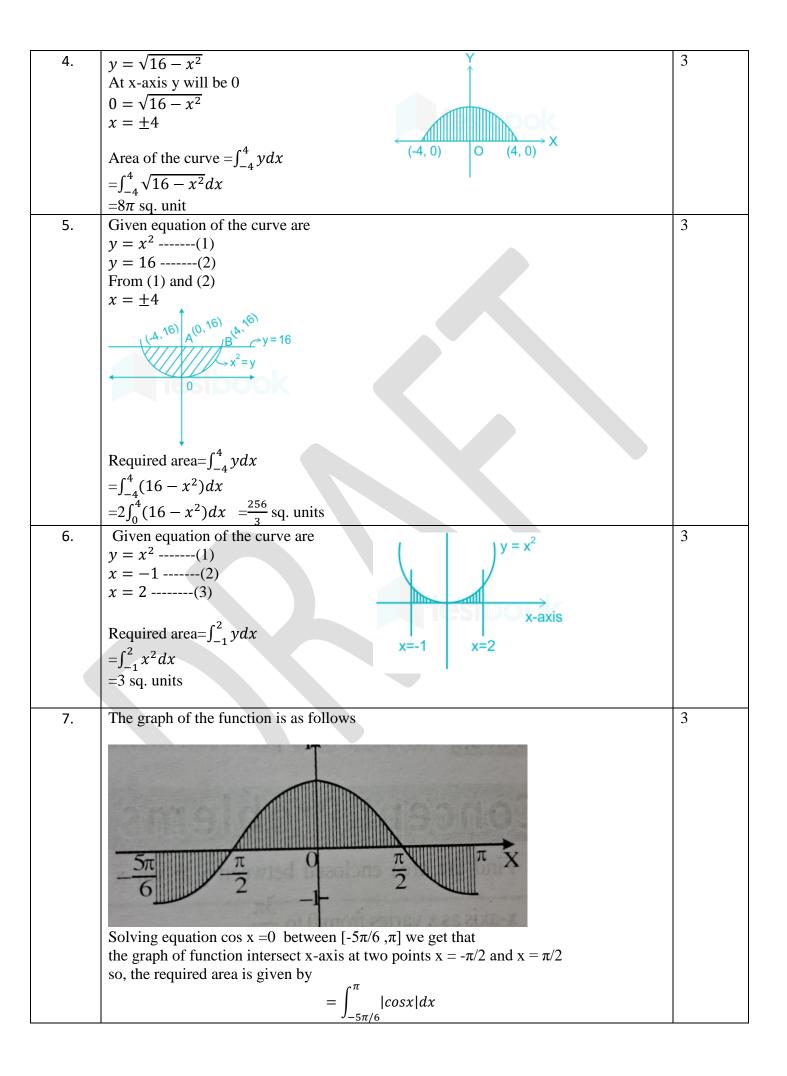
APPLICATION OF INTEGRALS 03 MARK TYPE QUESTIONS

7) and C(6, 2) by using 3
arve and the x-axis. 3
3
3
3
3
3
3
$5 x = -5\pi/6 \text{ and } x = \pi$ 3
ine $x=1$ 3
3
l m.
ılar curve by saying 3
s at 1 and heads
figure
ngure
3
the graph of the curve
3
the figure. One of the 3
apatti represents the
1 T
d d d

	Based on the above information, answer the following questions.	
	(i) Find the centre and of the circle of equation $(x-2)^2 + y^2 = 4$,	
	(a) $C=(2,0)$, $r=2$ (b) $C=(0,0)$, $r=2$	
	(b) $C=(2,0)$, $r=1$ (d) $C=(0.2)$, $r=2$	
	(ii) Both the chapattis meet each other at	
	(a) $(1,\sqrt{3}),(1,-\sqrt{3})$	
	(b) $(1,\sqrt{3}),(1,-3)$	
	(c) $(1,3),(1,-3)$	
	(d) $(1,\sqrt{2}), (1,-\sqrt{2})$	
	(iii) Area bounded by two chapattis is	
	$(a)\frac{8\pi}{3}-\sqrt{3}$ sq. units	
	$(b)\frac{8\pi}{5} - 2\sqrt{3} sq. units$	
	$(c)\frac{8\pi}{3}-2$ sq.units	
	$(d)\frac{8\pi}{3} - 2\sqrt{3} sq. units$	
14.	In a classroom teacher explain the properties of a particular curve by saying that this	3
	particular curve has beautiful up and downs. It starts at 1 and heads down until π radian,	
	and then heads up again and closely related to sine function and both follow each, other	
	exactly $\frac{\pi}{2}$ radian apart as shown in figure.	
	y 4	
	y = sin x	
	-3π $-\frac{5}{2}\pi$ 2π $-\frac{5}{2}\pi$ $-\frac{5}{2}\pi$ $-\frac{5}{2}\pi$ $-\frac{5}{2}\pi$ $-\frac{5}{2}\pi$ 3π \times	
	Based on the above information ,answer the following questions.	
	(i) Name the curve, about which teacher explained in the classroom.	
	(a) cosine (b) sine	
	(c) tangent (d) cotangent	
	(ii) Area of curve explained in the passage from $0 \text{ to} \frac{\pi}{2}$ is	
	(a) $\frac{1}{3}$ sq units	
	(b) $\frac{1}{2}$ sq units	
	(c) 1 sq units	
	(d) 2 sq units	
	(iii) Area of curve discussed in classroom from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$ is	
	$(a)\frac{7}{2}$ sq units	
	(b) $\frac{9}{2}$ sq units	
	(c) $\frac{11}{2}$ sq units	
	$(d)\frac{13}{2}$ sq units	
15.	In geometry we have learn formulae to calculate areas of various geometrical figures	3
	including triangles, rectangles, trapezium and circle. Such formula is fundamental in the	
	application of Mathematics to many real-life problems. The formula of geometry allow us to	
	calculate area of many simple figure .However, they are inadequate for calculating the areas	

enclosed by curves. For that we need concept of integral calculus.

- (i) The area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 - (a) πb sq. units
 - (b) $\pi a \, sq. \, units$
 - (c) π sq.units
 - (d) πab sq. units
- (ii) The area enclosed by the circle $x^2 + y^2 = a^2$ is
- (a) πa^2 (b) π
- (c) a^2
- (d) a
- (iii) The area of the region bounded by the curve $y = x^2$ and the line y = 4
- (a) 32 (b) 32/3
- (c) 3
- (d) 23



ANSWERS:

Q. NO	ANSWER	MARKS
1.	Vertices of the given triangle are A(2,5) B(4,7) and C(6,2) Equation of AB $y-5 = \frac{7-5}{4-2}(x-2)$ $\Rightarrow y-5 = x-2$ $\Rightarrow y = x+3$ $\begin{vmatrix} 8 & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	MARKS
	The equation of side BC, $(y-7) = \frac{2-7}{6-4}(x-4)$ $(y-7) = \frac{-5}{2}(x-4)$	
	$2y - 14 = -5x + 20$ $2y = -5x + 34$ $y = \frac{1}{2}(-5x + 34) - (2)$	
	The equation of side AC, $(y-5) = \frac{2-5}{6-2}(x-2)$	
	$(y-5) = \frac{-3}{4}(x-2)$ $4y - 20 = -3x + 6$ $4y = -3x + 26$	

	$y = \frac{1}{4}(-3x + 26) \qquad -(3)$	
	\therefore Area of $\triangle ABC$	
	$= \int_{2}^{4} y_{AB} dx + \int_{4}^{6} y_{BC} dx - \int_{2}^{6} y_{AC} dx$	
	$= \int_{2}^{4} (x+3) dx + \int_{4}^{6} \frac{-1}{2} (5x-34) dx - \int_{2}^{6} \frac{-1}{4} (3x-26) dx$	
	$= 12 + \frac{1}{2}(18) - \frac{1}{4}(56) - 12 + 9 - 14 = 7 \text{ sq units}$	
2.	To find the area enclosed by the curve and the x-axis, we need to integrate the absolute value of	
	the function y with respect to x, between the limits 0 and 2π .	
	The function $y = 2 \sin x + \sin 2x$ is always non-negative for $0 \le x \le 2\pi$, so we can simply integrate it	
	as is.	
	$A=2 (2\sin x + \sin 2x)dx=2\int (2\sin x + \sin 2x) dx$	
	A=2 (23111 X + 3111 $2X$) $dX=2$] (23111 X + 3111 $2X$) dX	
	$=4 \int_0^{\pi} \sin x dx + 2 \int_{\pi}^{2\pi} \sin 2x dx = 8 + 0 = 8$	
3.		
] 3.	·V	
	† **	
	(0.4)	
	(0, 4)	
	(-5, 0)	
	(a, b)	
	\(\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	(0, -4)	
	1	
	•	
	$v^2 - v^2$	
	Given the equation of the ellipse is $\frac{y^2}{16} + \frac{x^2}{25} = 1$	
	$\Rightarrow \frac{y^2}{16} = 1 - \frac{x^2}{25}$	
	$\Rightarrow Y = \frac{4}{5}\sqrt{25 + x^2}$	
	5 7 5 7 7	
	Since ellipse is symmetrical about the axes,	
	• •	
	So, required area = $4* \int_0^5 (4/5)\sqrt{25 - x^2} dx$	

= $20 \pi \text{ sq. units}$

	$\Gamma^{-\pi/2}$ $\Gamma^{\pi/2}$ Γ^{π}	
	$= -\int_{-5\pi/6}^{-\pi/2} \cos x dx + \int_{-\pi/2}^{\pi/2} \cos x dx + \int_{\pi/2}^{\pi} \cos x dx = 7/2$	
	311/6 - 11/2	
8.	The graph of the function cut off by line is as follows	3
	V	
	x=1	
		
	As per figure the area of small portion is given by	
	=area ABCA	
	$= 2 \int_{1}^{2} y dx = 2 \int_{1}^{2} \sqrt{(4 - x^{2})} dx$ $= 2 \left[\frac{x\sqrt{2^{2} - x^{2}}}{2} + \frac{2^{2}}{2} \sin^{-1} \frac{x}{2} \right]_{1}^{2}$	
	$=2\int_{1}^{\infty}ydx=2\int_{1}^{\infty}\sqrt{1-x^{2}}dx$	
	$=2\left[\frac{x\sqrt{2^{2}-x^{2}}}{2}+\frac{2^{2}}{2}sin^{-1}\frac{x}{2}\right]_{1}^{2}$	
	$=\frac{4\pi-3\sqrt{3}}{3}$	
	So Required area is	
	$=\pi(1)^2 - \frac{4\pi - 3\sqrt{3}}{3} = \frac{3\sqrt{3} - \pi}{3}$	
9.	The figure is as follows	3
	4a/m	
	9 4a/m² X	
	Solving y^2 =4ax and y = m x gives point of intersection	
	(4a/m², 4a/m)	
	$\int_{a}^{4a/m^{2}} \int_{a}^{2} \int_{a}^{4a/m^{2}} \int_{a}^{3} \int_{a}^{2} \int_{a}^{4a/m^{2}} \int_{a}^{4$	
	$A = \int_0^{4a/m^2} \left(2\sqrt{ax} - mx\right) dx = \left[\frac{4}{3}\sqrt{ax^{\frac{3}{2}} - \frac{mx^2}{2}}\right]_0^{4a/m^2}$	
	$\frac{3}{8} = \frac{8a^2}{3m^3}$ $m^3 = a^2$	
	$m^3 = a^2$	
10.	Reqd. area = $4\int_0^{\pi/2} \cos x dx$	3
	$= 4 [\sin x]_0^{\pi/2}$	
	$=4 \times 1 = 4 \text{ sq. units}$	
11.	Reqd. area = $\int_{-6}^{0} x + 3 dx$	3
	$= \int_{-6}^{-3} x+3 dx + \int_{-3}^{0} x+3 dx$	
	$=2\int_{-3}^{0}(x+3)dx$	
	= 9 sq. units	

12.	Reqd. area = $4 \int_0^{\sqrt{2}} \sqrt{2 - x^2} dx$	3
13.	= 2π sq. units (i) (a) Given eq. of circle is $(x-2)^2 + y^2 = 4$, $\Rightarrow (x-2)^2 + (y-0)^2 = 2^2$, Eq. of circle $(x-h)^2 + (y-k)^2 = r^2$, where centre (h,k) and radius = r So, by comparing above eq. we get centre $(2,0)$ and radius = 2	3
	(ii) $(a)(x-2)^2 + y^2 = 4 \dots (1)$ $x^2 + y^2 = 4 \Rightarrow y^2 = 4 - x^2 \dots (2)$ From eq.(1) and (2) we get	
	$(x-2)^{2} + 4 - x^{2} = 4$ $x^{2} - 4x + 4 + 4 - x^{2} = 4$ $-4x + 4 = 0 \Rightarrow x = 1$	
	On putting x=1 in $x^2 + y^2 = 4 \Rightarrow 1^2 + y^2 = 4 \Rightarrow y^2 = 3 \Rightarrow y = \pm \sqrt{3}$ Therefore point of intersections are $(1, \sqrt{3}), (1, -\sqrt{3})$	
	(iii) (d) Required area = $2\left(\int_0^1 y_1 dx + \int_1^2 y_2 dx\right)$ = $2\left(\int_0^1 \sqrt{4 - x^2} dx + \int_0^1 \sqrt{4 - (x - 2)^2} dx\right)$	
	$= \left[x\sqrt{4 - (x)^2} + 4\sin^{-1}\frac{x}{2} \right]_1^2 + \left[(x - 2)\sqrt{4 - (x - 2)^2} + 4\sin^{-1}\frac{x - 2}{2} \right]_0^1$ $= 4\sin^{-1}1 - \left(\sqrt{3} + 4 \times \frac{\pi}{6}\right) + \left\{ -\sqrt{3} + 4\sin^{-1}\left(-\frac{1}{2}\right) \right\} - \left\{ 0 + \frac{\pi}{2} \right\}$	
	$4 \sin^{-1}(-1) $ $= 4 \times \frac{\pi}{2} - \left(\sqrt{3} + \frac{2\pi}{3}\right) + \left(-\sqrt{3} - \frac{4\pi}{6}\right) - \left(-\frac{4\pi}{3}\right)$ $= \frac{8\pi}{3} - 2\sqrt{3} sq. units$	
14.	(i) (a) Here the teacher explained about cosine curve. π	3
	(ii) (c) : Required area = $\int_0^{\frac{\pi}{2}} cosxdx$ = $\left[sinx\right]_0^{\frac{\pi}{2}}$ = $sin\frac{\pi}{2} - sin 0$ = $1 - 0 = 1$ sq units	
	(iii) (b) \therefore Required area = $\left \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} cosx dx \right $ = $\left [sinx]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \right $	
	$ = \left \frac{\sin x_{1}}{\frac{\pi}{2}} \right $ $ = \left \sin \frac{3\pi}{2} - \sin \frac{\pi}{2} \right $ $ = \left -1 - 1 \right $ $ = \left -2 \right = 2 \text{ sq units} $	
15.	(i) (d) The given equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \dots \dots \dots (1)$ Area of ellipse = 4(area of region 1 st quadrant) =4 $\int_0^a y dx$ = $\int_0^a \frac{b}{a} \sqrt{a^2 - x^2} dx$	3
	$\left[\because (1) \Rightarrow y = \pm \frac{b}{a} \sqrt{a^2 - x^2} \right]$	

(But region OABO lies in 1st quadrant, y is positive)
$$=4 \int_0^a \frac{b}{a} \sqrt{a^2 - x^2} dx$$

$$= \frac{4b}{a} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a$$

$$= \frac{4b}{a} \left[\left\{ \frac{a}{2} (0) + \frac{a^2}{2} \sin^{-1} (1) \right\} - \{0 - 0\} \right]$$

$$= \frac{4b}{a} \left[\frac{a^2}{2} \cdot \frac{\pi}{2} \right]$$

$$= \pi ab \ sq \ units$$

(ii) (a) The given equation of ellipse is $x^2 + y^2 = a^2 \dots \dots \dots \dots (1)$ This is a circle whose centre is (0,0) and radius 'a' Area of circle = 4(area of region 1^{st} quadrant)

$$=4\int_0^a y \, dx$$
$$=\int_0^a \sqrt{a^2 - x^2} dx$$

$$\left[\because (1) \Rightarrow y = \pm \sqrt{a^2 - x^2}\right]$$

(But region OABO lies in 1st quadrant, y is positive) =4 $\int_0^a \sqrt{a^2 - x^2} dx$

$$=4 \int_0^a \sqrt{a^2 - x^2} \, dx$$

$$=4 \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a$$

$$= 4 \left[\left\{ \frac{a}{2} (0) + \frac{a^2}{2} \sin^{-1} (1) \right\} - \{0 - 0\} \right]$$

$$= 4 \left[\frac{a^2}{2} \cdot \frac{\pi}{2} \right]$$

$$= \pi a^2 \, sq \, units$$

(iii) (b) The given curve is $y = x^2 \dots (1)$ And the given line is $y = 4 \dots (2)$

$$\therefore \text{ Required area} = 2 \int_0^4 x \ dy$$
$$= 2 \int_0^4 \sqrt{y} dy$$
$$= 2 \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_0^4$$

$$=\frac{4}{3}\left[4^{\frac{3}{2}}-0\right]=\frac{4}{3}(8)=\frac{32}{3}sq \ units$$