CHAPTER-8

BINOMIAL THEOREMS

03 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Which is larger $(1.01)^{1000000}$ or 10,000 .	3
2.	Prove that $\sum_{r=0}^{n} 3^{rn} C_r = 4^n$.	3
3.	Using binomial theorem. Prove that 6^n-5n always leaves remainder I when divided by 25 .	3
4.	Find m such that the coefficient of x^2 in expansion of $\left(mx + \frac{m}{x}\right)^6$ is 960	3
	$\frac{1}{x} = \frac{1}{x} = \frac{1}$	
5.	If the expansion of $(1 - ax)^n = 1 - 21x + 189x^2 - 945x^3 + \cdots$, then find a	3
	and n	
		_
6.	Find the term which is at equal distance from beginning and from end in the	3
	expansion of $\left(\frac{x}{2} + \frac{1}{x}\right)^8$	
7.	Prove by using binomial theorem that $6^n - 5n - 1$ is divisible by 25, for all natural number n .	3
8.	Expand $(a+b)^5$ by using Pascal's triangle.	3
9.	Find the coefficient of x^n in the expansion of $(1+x)(1-x)^n$	
		3
10.	Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer	3
11. 12.	The first three terms in the expansion of a binomial are 1, 10 and 40 Find the expansion	3
	Which is larger $(1.01)^{1000000}$ or $10,000$?	
13.	Find the expansion of $(3x^2 - 2ax + 3a^2)^3$ using binomial theorem.	3
14.	Find the coefficient of x 4 in the expansion of	3
	$(1 + x + x^2 + x^3)^{11}$.	3
15.	Find n, in the expansion of	3
	$(1 + x)^n$, coefficients of 2nd, 3rd and 4th terms are in A.P. Then n is equal to	
16.	Find the coefficient of x^5 in binomial expansion of $(1 + 2x)^6(1 - x)^7$	3
17.	What are the last three digits of 27 ²⁶ ?	3
18.	Show that 2^{3n} -7n-1 is divisible by 49, where n is a positive integer.	3

ANSWERS:

Q. NO	ANSWER	MARKS
1.	$(1.01)^{10,00000}$ or $10,000$	3
	$(1.01)^{10,00000} = (1 + 0.01)^{10,00000}$ $= {}^{10,00000}C_0 + {}^{10,00000}C_1(0.01) + \text{other +ve term.}$	
	$= 1 + 10,00000 \times 0.01$ + other positive term	
	= 1 + 10,000	
	=10,001	
	Hence $(1.01)^{10,00000} > 10,000$	
2.	(2) $\sum_{r=0}^{n} 3^{r} n_{r} = \sum_{r=0}^{n} n_{r} 3^{r}$	3
	(2) $\sum_{n=0}^{\infty} 3^r {}^{n}c_r = \sum_{r=0}^{\infty} {}^{n}C_r 3^r$ $= {}^{n}C_0 + {}^{n}C_1 \cdot 3 + {}^{n}C_2 \cdot 3^2 + \dots + {}^{n}C_n 3^n$	
	$= {}^{n}C_{0} + {}^{n}C_{1} \cdot 3 + {}^{n}C_{2} \cdot 3^{2} + \dots + {}^{n}C_{n}3^{n}$ $= (1+3)^{n}$	
	$= (1+3)$ $= 4^n \text{ (RHS)}$	
3.	$6^n = (1+5)^n$	3
J.	$= 1 + {}^{n}C_{1}5 + {}^{n}C_{2}5^{2} + {}^{n}C_{3}5^{3} + \dots + 5^{n}$	
	$= 1 + 5n + 5^{2}({^{n}C_{2}} + {^{n}C_{3}}5 + \dots + 5^{n-2})$	
	$6^{n} - 5n = 1 + 25({}^{n}C_{2} + {}^{n}C_{3}5 + \dots + 5^{n-2})$	
	= 1 + 25k (Hence Proved)	
4.	$\left(mx + \frac{m}{x}\right)^6 = m^6 \left(x + \frac{1}{x}\right)^6$	3
	Then, coefficient of x^2 is $m^6 6_{C_2}$	
	$m^6 6_{C_2} = 960$	
	$m^6 = \frac{960}{15} = 64$	
	$m=2^{15}$	
5.	$(1-ax)^n = 1 - nax + \frac{n(n-1)}{2}a^2x^2 - \frac{n(n-1)(n-2)}{6}a^3x^3 \dots,$	3
	Comparing $na = 21$	3
	$\frac{n(n-1)}{2}a^2 = 189$	
	$n(n-1)a^2 = 378$	
	Thus, $(n-1)a = 18$	
	$Also\frac{n}{n-1} = \frac{7}{6}$	
	n = 7 and $a = 3$	
6.	The term which is at equal distance from beginning and from end is	3
	middle term	

	Thus, $T_5 = 8_{C_4} \left(\frac{x}{3}\right)^4 \left(\frac{1}{x}\right)^4 = \frac{70}{81}$	
7.	$(1+x)^n = C(n,0) + C(n.1)x + C(n.2)x^2 + \dots + C(n,n)x^n$	3
	So, $(1+x)^n - C(n,1)x - 1 = C(n,2)x^2 + \dots + C(n,n)x^n$	
	Putting x=5,we get	
	$6^n - 5n - 1$ is divisible by 25.	
8.	By using Pascal triangle, the coefficients are 1,5,10,10,5,1 $(a+b)^5 = a^5 + 5a^4b^1 + 10a^3b^2 + 10a^2b^3 + 5a^1b^4 + b^5$	3
9.	$(1+x)(1-x)^n = (1+x)\{1-nx+\frac{n(n-1)x^2}{2}-\dots+(-1)^nx^n\}$	3
	Z	
10.	So, coefficient of $x^n = (-1)^n C(n,n) + (-1)^{-1} C(n,n-1) = (-1)^n (1-n)$	3
10.	$(1+a)^m = c + c + c = a + c = a^2 + \dots + c = a^m$ putting a=8 and m=n+1 we get	
	$(1+8)^{n+1} = {c + c \choose 0} {c + c \choose 1} {8 + c \choose 2} {8^2 + \dots + c \choose n+1} {8^{n+1} \choose n+1}$	
	$9^{n+1} = 9 + 8n + 64 \begin{bmatrix} c + c & 8 + \dots + c & 8^{n-1} \\ c + c & 8 + \dots + c & 8^{n-1} \end{bmatrix}$	
	So $9^{n+1} - 8n - 9 = 64k$.implies the expression is divisible by 64	
11.	Let the expansion be $(a+b)^n$, $(1+2)^5$ $a^n = 1(i)$ $na^{n-1}b = 10(ii)$	3
	$\frac{n(n-1)}{2}a^{n-2}b^2 = 40 \text{on simplifying } a=1, b=2$	
12.	Splitting 1.01 and using binomial theorem to write the first few terms we have $(1.01)^{1000000} = (1+0.01)^{1000000} = 1+10000+other positive terms$	3
	Which is greater than 10000	
13.	$(27a^6 - 54ax^3 + 117a^2x^4 - 116a^3x^3 + 117a^4x^2 - 54a^5x + 27a^6)$	3
14.	990	3
15.	7	3
16.	Using binomial theorem we will expand both the terms.	3
	We know that,	
	$(x+y)^n = nC0x^n + nC1x^{n-1}y + nC2x^{n-2}y^2 + nC3x^{n-3}y^3 + \dots + nCrx^{n-r}y^r + \dots + nC0x^0y^n$	
	Applying the formula we get,	
	$(1+2x)^6 (1-x)^7 = (1+6C1(2x)+6C2(2x)^2+6C3(2x)^3+6C4(2x)^4+6C5(2x)^5+6C6(2x)^6)$	
	$(1 - 7C1x + 7C2(x)^2 - 7C3(x)^3 + 7C4(x)^4 - 7C5(x)^5 + 7C6(x)^6 - 7C7(x)^7)$	
	$= (1 + 12x + 60 \times^2 + 160 \times^3 + 240 \times^4 + 192 \times^5 + 64 \times^6) (1 - 7x + 21 \times^2 - 35 \times^3 + 35 \times^4 - 21 \times^5 + 7 \times^6 - x^7)$	
	Clearly, it can determined that the coefficient of x^5 is	

		$\Rightarrow 1 * (-21) + 12 * 35 + 60(-35) + 160 * 21 + 240 * (-7) + 192 * 1$	
		⇒ 171	
		Therefore, the coefficient of x^5 in $(1 + 2x)^6 (1 - x)^7$ is 171.	
	17.	In order to determine the same, the value 27^{26} needs to be reduced into the form $(730-1)^n$. After using simple binomial expansion, the digits can be obtained.	3
		Now, we have, $27^2 = 729$	
		Thus,	
		$27^{26} = (729)^{13} = (730 - 1)^{13}$	
		$= 13C0 (730)^{13} - 13C1 (730)^{12} + 13C2 (730)^{11} - \dots - 13C10 (730)^{3} + 13C11(730)^{2} - 13C12 (730) + 1$	
		$= 1000m + [(13 \times 12)]/2] \times (14)2 - (13) \times (730) + 1$	
		Herein, we can say that 'm' is a positive integer	
		Thus,	
		= 1000m + 15288 - 9490 = 1000m + 5799	
		Therefore, the last three digits of 27 ²⁶ are 799.	
	18.	Given 2^{3n} - $7n$ - $1=8^n$ - $7n$ - 1	3
		$=(1+7)^{n}-7n-1$	
		$= nC_0 + nC_1 + nC_2 + \dots + nC_n + nC_n - nC_1$	
		$=1+7n+nC_27^2++nC^n7^n-7n-1$	
		$=nC_27^2++nC^n7^n$	
		$=49(nC_2++nC_n7^{n-2})$	
		Which is divisible by 49	
1			1