CLASS-XII CHAPTER-01 RELATION AND FUNCTION 03 MARKS TYPE QUESTIONS

Q. No.	QUESTION	MARK
1	If R and S are equivalence relations on a set A, then prove that $R \cap S$ is also an equivalence relation.	3
2	Let <i>S</i> be the relation in real number R defined by $(a, b) S(c, d)$ if $ad = bc$ for $a, b, c, d \in R$ (set of real numbers). Prove that <i>S</i> is an equivalence relation.	
3	Classify the function $f(x) = 2^x + 2^{ x }$ as injection, surjection or bijections. Justify your answer.	3
4	Show that the relation R in the set $\{1, 2, 3\}$ given by R= $\{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but neither symmetric nor transitive.	3
5	Let A={1,2} . Find all one-to-one function from A to A.	3
6	Prove the function f:R \rightarrow R given by f(x)=cosx for all x \in R, is neither injective nor surjective.	3
7	An electrician charges a base fee of Rs. 70 plus Rs. 50 for each hour of work. Create a table that shows the amount of the electrician charges for 1, 2, 3, & 4 hours of work. Let x represent the number of hours and y represent the amount charged for x hours. Is the relation a function?	3
8	Jimmy has to fill up his car with gasoline to drive to and from work next week. If gas costs \$2.79 per gallon, and his car holds a maximum of 28 gallons, what is the domain and range of the function?	
9	"x lives within one mile of y" – Show that it is reflexive, symmetric, but not transitive relation.	3
10	Show that the relations S in the set of real numbers defined as S={ (a,b): a,b ϵ R and a $\leq b^3$ } is neither reflexive nor symmetric nor transitive	3
11	Let A= R -{ $\frac{2}{3}$ }, show that the function f in set A defined by $f(x) = \frac{4x-3}{6x-4}$ $\forall x \in A$, is one-one and onto	3

12	Show that the relation R defined on the set $N \times N$ by (a,b) R (c,d) $\Rightarrow a^2 + d^2 = b^2 + c^2 \forall a, b, c, d \in N$ is an equivalence relation	3
13	Let A = R-{3}, B = R-{1}. If f:A \rightarrow B be defined by $f(x) = \frac{x-2}{x-3} \forall x \in A$. Then show that f is bijective.	3
14	Let N denotes the set of all natural numbers and R be the relation on N X N defined by (a,b) R (c,d) if $ad(b+c) = bc (a+d)$. Show that R is an equivalence relation.	3
15	Check whether the relation R in R defined by $R = \{(a,b^3) : a \le b^3\}$ is reflexive, symmetric or transitive.	3
16	Show that the relation R in the set of real numbers, defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.	3
17	Let A = R-{3} and B = R-{1}. Consider the function $f : A \rightarrow B$ defined by $f(x) = \frac{x-2}{x-3}$. Show that f is one-one and onto.	3
18	Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b) : a, b \in Z, and (a-b) \text{ is divisible by 5}\}.$ Prove that R is an equivalence relation.	3

ANSWER CHAPTER-01 RELATION AND FUNCTION 03 MARKS TYPE QUESTIONS

Q.No	ANSWERS	<u>Mark</u>		
1	Given that R and S are reflexive, symmetric and transitive.	3		
	<u>Reflexivity</u> : Let $a \in A$. So, $(a, a) \in R$ and $(a, a) \in S$ (as R and S are reflexive)			
	\Rightarrow (<i>a</i> , <i>a</i>) \in <i>R</i> \cap <i>S</i> . So, <i>R</i> \cap <i>S</i> is reflexive.			
	Symmetricity: Let $a, b \in A$ and $(a, b) \in R \cap S$			
	$\Rightarrow (a,b) \in R \text{ and } (a,b) \in S$			
	\Rightarrow (b, a) $\in R$ and (b, a) $\in S$ (as R and S are symmetric)			
	\Rightarrow $(a, b) \in R \cap S$. So, $R \cap S$ is symmetric.			
	<u>Transitivity</u> : Let $a, b, c \in A$ and $(a, b) \in R \cap S$ and $(b, c) \in R \cup S$			
	\Rightarrow $(a,b) \in R$ and $(a,b) \in S$ and $(b,c) \in R$ and $(b,c) \in S$			
	$\Rightarrow (a,b) \in R, (b,c) \in R \text{ and } (a,b) \in S, (b,c) \in S$ $\Rightarrow (a,c) \in R \text{ and } (a,c) \in S \text{ (as R and S are transitive)}$ $\Rightarrow (a,c) \in R \cap S \text{ . So, } R \cap S \text{ is transitive.}$			
	Therefore, $R \cap S$ is an equivalence relation.			
2	<u>Reflexivity</u> : Let $a, b \in R$ and $(a, b) \in R \times R$.	3		
	Since, $ab = ba$			
	$\Rightarrow (a,b)S(a,b)$. So, S is reflexive.			
	Symmetricity: Let $a, b, c, d \in R$ and $(a, b), (c, d) \in R \times R$			
	Let (a,b) S (c,d)			
	$\Rightarrow ad = bc \qquad \Rightarrow bc = ad \qquad \Rightarrow cb = da$			
	\Rightarrow (<i>c</i> , <i>d</i>) <i>S</i> (<i>a</i> , <i>b</i>) . So, <i>S</i> is symmetric.			
	<u>Transitivity</u> : Let $a, b, c, d, e, f \in R$ and $(a, b), (c, d), (e, f) \in R \times R$			

	Let $(a,b) S(c,d)$ and $(c,d) S(e,f)$		
	$ \begin{array}{l} \Rightarrow ad = bc \\ \Rightarrow adcf = bcde \\ \Rightarrow af = be \end{array} and cf = de \\ \end{array} $		
	$\Rightarrow (a,b) \ S \ (e,f)$		
	So, S is transitive.		
	Therefore R is an equivalence relation.		
3	$f(x) = 2^{x} + 2^{ x } = \{2, 2^{x} x \ge 0 \ 2^{x} + 2^{-x} x < 0$ $\frac{Case-1}{2}: x \ge 0 \text{ and } f(x_{1}) = f(x_{2})$ $\Rightarrow 2.2^{x_{1}} = 2.2^{x_{2}} \Rightarrow x_{1} = x_{2}$ $\frac{Case-2}{2}: x < 0$ $\text{Let } x_{1}, x_{2} < 0 \text{ and } f(x_{1}) = f(x_{2})$ $\Rightarrow 2^{x_{1}} + 2^{-x_{1}} = 2^{x_{2}} + 2^{-x_{2}}$ $\Rightarrow 2^{x_{1}} - 2^{x_{2}} = 2^{-x_{2}} - 2^{-x_{1}} = \frac{1}{2^{x_{2}}} - \frac{1}{2^{x_{1}}}$ $\Rightarrow 2^{x_{1}} - 2^{x_{2}} = 2^{-x_{2}} - 2^{-x_{1}} = \frac{1}{2^{x_{2}}} - \frac{1}{2^{x_{1}}}$ $\Rightarrow 2^{x_{1}} - 2^{x_{2}} = \frac{2^{x_{1}-2^{x_{2}}}}{2^{x_{2},x_{2}x_{1}}} - 2^{x_{1}} - 2^{x_{2}} = 0$ $\Rightarrow (2^{x_{1}} - 2^{x_{2}})(2^{x_{2}} \times 2^{x_{1}}) - 2^{x_{1}} - 2^{x_{2}} = 0$ $\Rightarrow (2^{x_{1}} - 2^{x_{2}})(2^{x_{2}} \times 2^{x_{1}}) - 1 = 2^{x_{1}+x_{2}} - 1 \neq 0$ $\Rightarrow x_{1} = x_{2}$ $Case-3: \text{ let } x_{1} \ge 0 \text{ and } x_{2} < 0. \text{ Clearly, } x_{1} \neq x_{2}$ $\text{Now, } f(x_{1}) = 2.2^{x_{1}} \ge 2 \text{ and } f(x_{2}) = 2^{x_{2}} + 2^{-x_{2}} > 2$ $\text{Therefore, } f(x_{1}) can be equal to f(x_{2}) for some x_{1}, x_{2}.$ So, f is a many-one function. Again since the value of $f(x) = 2^{x} + 2^{ x } = \{2.2^{x} x \ge 0 \ 2^{x} + 2^{-x} x < 0 \text{ for all } x \in R$ $Rcan not be negative, so f is not onto. {From the graph, it is clear that Range is [2, \infty) and co-domain=R} Hence f is many-one and onto.$	3	
4	$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$	3	
	Reflexive		
	If the relation is reflexive,then (a, a) \in R for every a \in (1, 2, 3).		
	Since (1, 1) \in R, (2, 2) \in R & (3, 3) \in R.		
	Therefore, R is reflexive		

	<u>Symmetric</u>				
	To check wh	ether symmetr:	ic or not, If (a, b)∈R, then (b, a)∈R.	
	Here (1, 2) \in	R, but (2, 1)∉R.			
	Therefore, R is	not symmetric.			
	Transitive				
	To check wheth	er transitive or not,			
	If (a,b)∈R &	(b,c) \in R, then (a,c)∈R.		
	Here, (1, 2)	R and (2, 3) \in R	but (1, 3)∉R.		
	Therefore, R is	not transitive.			
	Hence, R is refle	exive but neither sym	metric nor transitive		_
5	A={1,2} one- one function f(x)=y for every unique $f(x) \rightarrow one$ $f(A)={1,1 2,2}$ $f(A)={1,2 2,1}$	on from A to A. e x, y should be uniqu	Je.		3
6	So, different ele Surjectivit	ments in R may have y : Since the vai t the range of f	lues of cosx lie b	ce, f is not an injection. oetween −1 and 1, it to its co-domain. So,	f is
7	The table can be	e drawn as:			3
	X (hour)	Y	Base Fee	Total	
	1	50	70	120	
	2	100	70	170	
	3	150	70	220	
	4	200	70	270	

[The relation is a function such that	
	Y = x * 50	
	Total = Y + 70	
	Also, Total = $(x*50) + 70$, where x number of hours	
	We can see that each x element has only one y-element as well as total number associated with it.	
	Hence, the relation is a function, since a function is a special type of relation where each input has exactly one output, and the output can be traced back to its input.	
8	The number of gallons of gas purchased will go on the x-axis and the costs of the gasoline goes on the y-axis.	3
	Because the least amount of gas he can purchase is 0 gallons which is $0 = 0 = 0$ so then part of the function is $0 \le x$.	
	The most amount of money he can spend on gas is \$78.12 which is the full 28 gallons. i.e., 2.79 * 28 gallons = 78.12	
	This adds to the function making it $0 \le x \le 28$.	
	Then to complete the function because each gallon of gas cost \$2.79	
	and x represents the amount of gas bought the equation is $y=2.79x$	
	and $0 \le x \le 28$.	
	Hence,	
	The domain is [0,28] and the range is [0,78.12]	
9	Perfectly valid as well:	3
	 * Any person lives within a mile of themselves (namely zero distance), so it is reflexive. * If one person lives within a mile of another, that person consequently lives within a mile of the first, so it's symmetric. 	
	* It is not ensured that if Paul lives within a mile of John, who lives within a mile of Martha,	
	that Paul is within a mile of Martha. For instance, if Paul and Martha are two miles apart, and	
	John is exactly between the two, we see a lack of transitivity.	
	Hence, the given relation is reflexive, symmetric but not transitive.	
10	$S=\{(a,b): a,b \in \mathbb{R} \text{ and } a \le b^3\}$	3
	Refexive: - as $\frac{1}{2} \le (\frac{1}{2})^3$ where $\frac{1}{2} \in R$, is not true	
	$\left(\frac{1}{2},\frac{1}{2}\right) \notin S$	
	Thus S is not reflexive (1)	
	Symmetric: as $-2 \le (3)^3$ where $(-2,30 \in S \text{ is true but } 3 \le (-2)^3$ is not true.	
	i.e. $(-2,3) \in S$ but $(3,-2) \notin S$ (1) Therefore S is not symmetric	
	Therefore ,S is not symmetric . Therefore ,S is not symmetric . Therefore ,S is not symmetric .	
	Transitive: As $3 \le (\frac{3}{2})^3$ and $\frac{3}{2} \le (\frac{4}{3})^3$ where $3, \frac{3}{2}, \frac{4}{3} \in S$ are true but $3 \le (\frac{4}{3})^3$ is not true i.e. $(3, \frac{3}{2}) \in S$ and $(\frac{3}{2}, \frac{4}{3}) \in S$ but $(3, \frac{4}{3}) \notin S$.	
	therefore S is not transitive (1)	
	Hence is neither reflexive nor symmetric nor transitive	
		•

11	Circle that $f(x) = \frac{4x-3}{2}$ by $x \in A$	3
	Given that $f(x) = \frac{4x-3}{6x-4} \forall x \in A$	5
	To show that f is One-One	
	Let $f(x_1) = f(x_2)$ $-x_1 + 4x_1 + 3 + 4x_2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + $	
	Then $\left(\frac{4x_1+3}{6x_1-4}\right) = \frac{4x_2+3}{6x_2-4}$ on solving this $\left(\frac{1}{2}\right)$	
	we get $x_1 = x_2$ (1)	
	To show that f is Onto	
	Let $\mathbf{y} \in \mathbf{B}$ so $\mathbf{y} = f(\mathbf{x})$ $(\frac{1}{2})$	
	Or $y = \frac{4x-3}{6x-4}$ solve for x we get	
	07. 1	
	$x = \frac{4y+3}{6y-4} = g(y) \Rightarrow f \text{ is Onto function.}$ (1)	
12	For Reflexive Relation	3
12	Let $(a,b) \in N \times N$	5
	Then since $a^2 + b^2 = a^2 + b^2$	
	$\begin{array}{c} \text{inclustrate} a \rightarrow b - a \rightarrow b \\ \text{(a,b) R (a,b) Hence R is reflexive relation} \end{array} \tag{1}$	
	Symmetric:- Let $(a,b), (c,d) \in N \times N$ be such that	
	(a,b) R (c,d) \Rightarrow $a^2 + d^2 = b^2 + c^2$	
	$ (a,b) \land (c,d) \rightarrow u + u - b + c \Rightarrow c^2 + b^2 = d^2 + a^2 $	
	$\Rightarrow (c,d) R (a,b) \text{ Hence R is symmetric relation} $ (1)	
	Transitive:- Let (a,b) , (c,d) , $(e,f) \in N \times N$ be such that	
	(a,b) R (c,d) and (c,d) R (e,f) $\Rightarrow a^2 + d^2 = b^2 + c^2 \dots \dots$	
	Adding equation.(1) and equation (2) $\Rightarrow a^2 + d^2 + c^2 + f^2 = b^2 + c^2 + d^2 + e^2$	
	$ \Rightarrow a^{2} + a^{2} + c^{2} + f^{2} = b^{2} + e^{2} $	
	Since R is reflexive, symmetric and transitive	
	Hence R is equivalence relation	
13	For injectivity .	2
15	For injectivity : $x_{1-2} - x_{2-2}$	3
	$f(x_1) = f(x_2)$ therefore $\frac{x_1-2}{x_1-3} = \frac{x_2-2}{x_2-3}$	
	(x1-2)(x2-3) = (x1-3)(x2-2)	
	X1.x2 - 3x1 - 2x2 + 6 = x1.x2 - 3x2 - 2x1 + 6	
	then $x1 = x2$, $f(x)$ is injective.	
	For Surjectivity:	
	$y = \frac{x-2}{x-3}$; $x-2 = xy-3y$; $x = \frac{2-3y}{1-y} \in A$ for every value of B	
	So f is surjective	
	Hence f is bijective.	
14	Reflexivity:	3
	$b+a = a+b$, for $a,b \in N$	5
	$ab=ba$, for $a,b \in N$	
	$ab-ba$, for $a,b \in N$ $ab(b+a) = ba(a+b)$, for $a,b \in N$	
	(a,b) R (b,a), R is reflexive.	
	Symmetric:	
L		

	=(a,b)R(c,d)	
	ad(b+c)=bc(a+d)	
	cb(d+a) = da(c+b)	
	= (c,d) R (a,b)	
	Transitivity: Let $(a, b) P(a, d) P(a, f)$ then $(a, b) P(a, f)$	
	Let $(a,b)R(c,d)$ and $(c,d)R(e,f)$ then $(a,b)R(e,f)$	
15	Reflexive	3
	$R = \{(a,b^3) : a \le b^3\}$ Here $\frac{1}{2} \in R$	
	3	
	$\left \frac{1}{3} > \frac{1}{27}\right $	
	$\begin{pmatrix} 3\\ (\frac{1}{3},\frac{1}{3}) \notin R \end{pmatrix}$	
	$\frac{\text{Symmetric}}{\text{Let } (1,2) \in R}$	
	$1 \le 8 \text{ or } 1 \le 2^3$	
	but $(2,1) \in R$ and $8 \ge 1$	
	it is not symmetric.	
	Transitive:	
	$(10,3) \in R$ and $(3,2) \in R$ but (10,3) does not belongs to R	
	Relation is not transitive.	
16		
10	<u>For reflexive</u> : Let $a = \frac{1}{2}$,	
	$(a, a) \in \mathbb{R} \Rightarrow \frac{1}{2} \le (\frac{1}{2})^2 \Rightarrow \frac{1}{2} \le \frac{1}{4}$, false, Hence, not reflexive.	1
	<u>For symmetric</u> : Let $(-1, 2) \in \mathbb{R}$ as $-1 \le (2)^2$ is true.	
	Now (2,-1) $\in \mathbb{R} \Rightarrow 2 \le (-1)^2 \Rightarrow 2 \le 1$ is false.	1
	As $(-1, 2) \in \mathbb{R} \Rightarrow (2, -1) \in \mathbb{R}$, Hence, not symmetric.	
	<u>For transitive</u> : Let $(6,3),(3,2) \in \mathbb{R}$	
	$(6,3) \in \mathbb{R} \Rightarrow 6 \le (3)^2 \Rightarrow 6 \le 9$, true	1
	$(3,2) \in \mathbb{R} \Rightarrow 3 \le (2)^2 \Rightarrow 3 \le 4$, true	
	We have to show, $(6, 2) \in \mathbb{R}$	
	$=>6 \le (2)^2 \Longrightarrow 6 \le 4$, false. So, not transitive.	
17	Given, $A = R - \{3\}$, $B = R - \{1\}$ and $f(x) = \frac{x-2}{x-3}$.	
	<u>For one-one</u> : Let for $x_1, x_2 \in A$,	11
	$f(x_1) = f(x_2) \implies \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$	$1\frac{1}{2}$
	$\Rightarrow x_1 x_2 - 2x_2 - 3x_1 + 6 = x_1 x_2 - 3x_2 - 2x_1 + 6$	
	$\Rightarrow x_1 = x_2$	
		1

	$As f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. Hence, function is one-one.	$1\frac{1}{2}$
	<u>For onto</u> : Let $y \in B$, there exists $x \in A$ such that $y = f(x) \Rightarrow y = \frac{x-2}{x-3}$	2
	\Rightarrow xy-3y = x-2	
	\Rightarrow xy-x = 3y-2	
	\Rightarrow x(y-1) = 3y-2	
	\Rightarrow x = $\frac{3y-2}{y-1} \in A$. Hence, onto.	
18	For reflexive:	1
	For any $a \in \mathbb{Z}$, we have $a - a = 0$, which is divisible by 5.	
	$\Rightarrow (a, a) \in R$	
	Thus, $(a, a) \in R$ for all $a \in A$.	
	So, R is reflexive. For summative L at $(r, h) = P$. Then, $(r, h) = P$.	1
	For symmetric : Let $(a, b) \in R$. Then, $(a, b) \in R$ $\Rightarrow a-b$ is divisible by 5	
	$\Rightarrow a-b \text{ is divisible by 5}$ $\Rightarrow -(a-b) \text{ is divisible by 5}$	
	$\Rightarrow b-a \text{ is divisible by 5}$	
	$\Rightarrow (b, a) \in R$	
	So, R is symmetric.	
	<u>For transitive</u> : Let $(a,b) \in R$ and $(b,c) \in R$, for $a, b, c \in Z$	1
	\Rightarrow (a-b) is divisible by 5 and (b-c) is divisible by 5	
	$\Rightarrow (a - b) + (b - c) = a - c \text{ is divisible by 5}$	
	\Rightarrow (a, c) ϵR	
	As $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$	
	Hence, R is transitive.	
	Since R is reflexive, symmetric and transitive	
	\Rightarrow <i>R</i> is equivalence relation.	