CHAPTER-12 INTRODUCTION TO 3D 04 MARK TYPE QUESTIONS

Q. NO 1.		QUESTION	MARK 4
1.	X	YZ XY XY YZ XY	4
	(i)	x-axis is the intersection of the planes	
		(a) xy and xz (b) yz and zx	
		(c) xy and yz (d) none of these	
	(ii)	Equation y-axis is considered as	
		(a) x=0,y=0 (b) y=0,z=0	
		(c) z=0,x=0 (d) none of these	
	(iii)	The locus of the point x=0 is	
		(a) xy-plane (b) yz-plane	
	<i>(</i> ,)	(c) zx-plane (d) none of these	
	(iv)	A plane is parallel to yz-plane, so it is perpendicular to	
		(a) x-axis(b) y-axis(c) z-axis(d) none of these	
2.	A triangu	lar board is supported at its centroid which is at origin, if the three vertices of	4
2.	_	re A(2a,2,6), B(-4,3b,-10), C(8,14,2c), then	
	(i)	Find the value of a, b and c.	
	(ii)	Find the length of median through vertex A.	
	(iii)	If the point D is at AB and divide it in 2:3. Find coordinates of mid-point of CD.	
	(iv)	Find the coordinates of mid-point of CD.	
		X X X X X X X X X X X X X	
3.		e the co-ordinates of a point where Ramesh is standing equidistant from the point (3, 4) and the shortest distance from the line joining the point (1, 2) and (3, 4) to	4
4.	During a ⁻ 4 is the pe	Thunderstorm the Meteorological Dept. of Odisha predicted a trough line 2x - 3y = erpendicular bisector of the line two cities A&B. If the co-ordinates of A are (-3, 1), o-ordinates of B.	4

	Trough	
5.	If the origin is the centroid of \checkmark PQR with vertices P (a,0,6) Q(4,b,-1) and R (4
6.	2,4,c) then find the values of a,b and c. Show that the points (-2,6,-2) (0,4,-1) (-2,3,1) and (-4,5,0) are the vertices of a square	4
7.	Four students in traditional dress represent four states of india, standing at the points represented by $O(0,0,0)$, $A(a,0,0)$, $B(0,b,0)$ and $C(0,0,c)$. Find the place, in terms of coordinate ,where a girl representing "BHARATMATA" be replaced so that "BHARATMATA" is equidistant from the four students.	4
8.	Three students are standing in a park with three different sign boards "SAVE ENVIRONMENT", "DON'T LITTER", "KEEP PLACE CLEAN". Their positions are marked by the points A(0,7,10),B(-1,6,6) and C(-4,9,6). The three students are holding GREEN colored ribbon together. Answer the following questions which are based on above information:- (i) Find the difference between lengths of ribbon AB and ribbon BC. (ii) Ribbons form the sides of a right angled triangle". Is this statement correct? Justify.	4
9.	A(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle <bac bc<="" meets="" td=""><td>4</td></bac>	4
10.	A boy is standing at point O and observe three kites A, B and C in space. Taking O as origin if the coordinates of three kites A, B and C are (3,4,5), (1, 3, 4) and (2,-1,4) respectively, then	4
	(i). the distance between kites A and B is	
	(a) V6 units. (b) 3V2 units	
	(c) 5 units. (d) 9√2 units	
	(ii). The coordinates of a point on the y-axis which is at a distance of $\sqrt{35}$ units from kite A are	
	(a) (0,0, 5). (b) (0,7,0)	
	(c) (3,0,0). (d) (0.5,0)	
	(iii). The coordinates of point D so that ABCD is a parallelogram are	
	(a) (6, 0,5). (c) (-1,3,2)	

	(b) (4,9,5). (d) (5,6,0)	
	(iv). If the points (0,-1,-7), (2, 1-9) and (6,513) represent kites A, B and C then the kites	
	(a) are collinear. (b) form right angled triangle	
	(c) form an isosceles triangles. (d) form a rhombus	
11.	Show that the points A (1,2,3), B (-1, -2, -1), C (2,3,2) and D (4,7,6) are the vertices of a parallelogram ABCD, but it is not a rectangle.	4
12.	The mid-points of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find its vertices.	4
13.	You are an urban planner working on a new park design. The park has a triangular playground with vertices A (2, 3, 4), B (5, 6, 7), and C (8, 9, 10). The park also features a jogging track that passes through the centroid of the triangular playground. Answer the following questions: MCQ 1: What are the coordinates of the centroid of triangle ABC? a) (5, 6, 7) b) (5, 6, 5) c) (5, 6, 6) d) (5, 6, 8) MCQ 2: What is the equation of the line passing through the centroid of triangle ABC? a) $x = 5$ b) $y = 6$ c) $z = 6$ d) $x + y + z = 17$ MCQ 3: At what coordinates does the jogging track intersect the x-y plane? a) (5, 6, 0) b) (5, 0, 7) c) (0, 6, 7) d) (0, 6, 0) **MCQ 4: What is the equation of the plane containing the triangular playground ABC and parallel to the x-z plane? a) $y = 6$ b) $x = 5$ c) $y + z = 13$ d) $x - y = -1$	4
14.	1. Find the Co-ordinate of a point equidistant from the four points	4

Q. NO		ANSWER	MARKS
1.	(i)	(a) xy and yz	4
	(ii)	(c) z=0,x=0	
	(iii)	(b) yz-plane	
	(iv)	(a) x-axis	
2.	(i)	$\frac{2a-4+8}{3} = 0 \implies a = -2$	4
		$\frac{2+3b+14}{3} = 0 \implies b = \frac{-16}{3}$	
		$\frac{6-10+2c}{3} = 0 \implies c = 2$	
		3	
	(::)	(-4+8, -16+14, -10+4)	
	(ii)	Mid point of BC= $\left(\frac{-4+8}{2}, \frac{-16+14}{2}, \frac{-10+4}{2}\right)$	
		= (2,-1,-3)	
		Length of median through vertex A	
		$= \sqrt{(-4-2)^2 + (2+1)^2 + (6+3)^2}$	
		$=\sqrt{36+9+81}=3\sqrt{14}.$	
	()		
	(iii)	Points A (-4,2,6) and B(-4,-16,-10)	
		Ratio 2:3	
		Coordinates of point D $(2(-4) + 3(-4), 2(-16) + 3 \times 2, 2(-10) + 3 \times 6)$	
		$=\left(\frac{2(-4)+3(-4)}{2+3},\frac{2(-16)+3\times2}{2+3},\frac{2(-10)+3\times6}{2+3}\right)$	
		· · · · · · · · · · · · · · · · · · ·	
		$=\left(-4,\frac{-26}{5},\frac{-2}{5}\right)$	
	(iv)	Mid point of CD= $\left(\frac{8-4}{2}, \frac{14-\frac{26}{5}}{2}, \frac{4-\frac{2}{5}}{2}\right)$	
	(17)		
		$=\left(2,\frac{22}{5},\frac{9}{5}\right)$	
3.	Fa. of line	(-5-5) e through A(1,2) & B(3,4) is y-2=1(x-1) => x-y+1=0	1
		distance $\left \frac{x-y+1}{\sqrt{2}}\right = \sqrt{2} \Rightarrow x-y-1=0$ (eq.1)	
		such that PA=PB	+1
		$(2)^{2}=(x-3)^{2}+(y-4)^{2} => x+y-5=0 (eq.2)$	+1
	Solving e	q.1 & 2 point is (3,2)	+1
4.	Let C is N	1.P. of AB with A(-3.1)	1
		of perpendicular bisector CD is 2x-3y=4 (eq.1)	+1
	m(CD)=	=2/3 =>m(AB)=-3/2 ,	+1

ANSWERS:

	Eq. of AB y-1=(-3/2)(x+3) => 3x+2y+8=0 (eq.2)	
	Solving (1) & (2), C(-16/13,-28/13)	+1
	⇒ B (7/13,-43/13)	
5.	Given, vertices of \bullet PQR are P (a,0,6) Q(4,b,-1) and R(2,4,c)	4
	Then, the coordinates of the centroid of \checkmark PQR are given by	
	$\left(\frac{a+4+2}{3}, \frac{0+b+4}{3}, \frac{6-1+c}{3}\right)$	
	$=(\frac{a+6}{3},\frac{b+4}{3},\frac{c+5}{3})$	
	Given, that the centroid of \checkmark PQR is the point (0,0,0)	
	$\therefore \frac{a+6}{3} = 0$	
	3	
	$\Rightarrow a = -6$	
	$\frac{b+4}{3} = 0$	
	\Rightarrow b = -4	
	$\frac{c+5}{2} = 0$	
	$\Rightarrow c = -5$	
	Hence, $a = -6$, $b = -4$ and $c = -5$.	
6.	Let A (-2,6,-2) B (0,4,-1) C (-2,3,1) and D (-4,5,0) be the given points.	4
	$AB = \sqrt{(0+2)^2 + (4-6)^2 + (-1+2)^2}$	
	[using the distance formula]	
	$=\sqrt{4+4+1}=\sqrt{9}$	
	= 3 units	
	$BC = \sqrt{(-2-0)^2 + (3-4)^2 + (1+1)^2}$	
	$=\sqrt{4+4+1}=\sqrt{9}$	
	= 3 units	
	$CD = \sqrt{(-4+2)^2 + (5-3)^2 + (0-1)^2}$	
	$=\sqrt{4+4+1} = \sqrt{9}$	
	= 3 units.	
	$AD = \sqrt{(-4+2)^2 + (5-6)^2 + (0+2)^2}$	
	$=\sqrt{4+1+4} = \sqrt{9}$	
	= 3 units	
	Here, $AB = BC = CD = DA$	
	So, ABCD is a square or a rhombus.	
	Now, AC = $\sqrt{(-4+2)^2 + (5-3)^2 + (0-1)^2}$	
	$=\sqrt{0+9+9} = \sqrt{18}$ units	
	And BD = $\sqrt{(-4+2)^2 + (5-3)^2 + (0-1)^2}$	
	$=\sqrt{16+1+1} = \sqrt{18}$ units	
	Since, diagonal AC = diagonal BD	
	Hence ABCD is a square.	
7.	Let $O(0,0,0)$, $A(a,0,0)$, $B(0,b,0)$ and $C(0,0,c)$ be four points equidistant from the point $P(x,y,z)$.	4
	Then PA=PB=PC=OP	

	Now, $OP=PA \Rightarrow OP^2=PA^2$	
	$\Rightarrow x^{2} + y^{2} + z^{2} = (x - a)^{2} + (y - 0)^{2} + (z - 0)^{2}$	
	$\Rightarrow x = a/2$	
	Similarly, OP=PB $\Rightarrow y = \frac{b}{2}$	
	and $OP=PC \Rightarrow z = \frac{c}{2}$	
	Hence, the coordinate of the required points are(a/2,b/2,c/2)	
8.	$AB=3\sqrt{2}$, $BC=3\sqrt{2}$, $CA=6$	4
	(i) Difference between lengths of ribbon AB and ribbon BC is Zero.	
	(ii) $AB^2 + BC^2 = CA^2$	
	Hence, $\triangle ABC$ is right angled triangle at B	
9.	The distance between the points A (1, 2, 3) and B (0, 4, 1) is	4
	AB, = $\sqrt{\{(1-0)^2 + (2-4)^2 + (3-1)^2\}}$	
	$=\sqrt{1^2+2^2+2^2}$	
	$=\sqrt{1+4+4}$	
	= 3	
	The distance between the points A (1, 2, 3) and C (-1,-1,-3) is AC,	
	$=\sqrt{(1+1)^2 + (2+1)^2 + (3+3)^2}$	
	$=\sqrt{4+9+36}$	
	=7	
	So, AB/AC =3/7	
	AB: AC = 3:7	
	BD: DC = 3:7	
10	The coordinates of D are (-3/10, 5/2, -1/5).	
10.	(i) b	4
	(ii) d	
	(iii) a	
	(iv) a	
11.	ANSWER	
12.	(1,2,3),(3,4,5),(-1,6,-7)	
13.	Answer: MCQ 1: b) (5, 6, 5)	4
	MCQ 2: c) $z = 6$	
	MCQ 3: a) (5, 6, 0)	
1.4	MCQ 4: c) y + z = 13	4
14.	P(x,y,z) be the required point OP=PA=PB=PC	4

Now
$$OP = PA$$

 $\Rightarrow OP^2 = PA^2$
 $\Rightarrow x^2 + y^2 + z^2 = (x - a)^2 + (y - 0)^2 + (z - 0)^2$
 $\Rightarrow x^2 + y^2 + z^2 = x^2 - 2ax + a^2 + y^2 + z^2$
 $2ax = a^2$
 $3imilarly OP = PB$
 $\Rightarrow y = \frac{b}{2}$
 $A(x, y, z,) \quad B(x_3, y_3, z_3) \text{ and } C(x_3, y_3, z_3) \quad D, E \text{ and } F \text{ are mid points of side}$
 $BC, CA, \text{ and } AB \text{ respectively.}$
Then $\frac{x_1 + x_3}{2} = -1$
 $x_1 + x_3 = -2....(1)$
 $\frac{y_1 + y_2}{2} = 1$
 $y_1 + y_2 = 2....(2)$
 $\frac{z_1 + z_2}{2} = -4$
 $z_1 + z_2 = -8....(3)$
 $\frac{x_2 + x_3}{2} = 1$
 $x_2 + x_3 = 2.....(4)$
 $\frac{y_2 + y_3}{2} = 2$
 $y_2 + y_3 = 4.....(5)$
 $\frac{z_2 + z_3}{2} = -3$
 $z_2 + z_3 = -6.....(6)$
 $\frac{x_1 + x_5}{2} = 3$
 $x_1 + x_3 = 6.....(7)$
 $\frac{y_1 + y_3}{2} = 0$
 $y_1 + y_3 = 0.....(8)$
 $\frac{z_1 + z_3}{2} = 1$
 $z_1 + z_3 = 2.....(9)$
Adding eq (1)(4) and (7) we get

		1
	$2(x_1 + x_2 + x_3) = -2 + 2 + 6$	
	Adding eq. (2 <u>).(</u> 5) and (8)	
	$2(y_1 + y_2 + y_3) = 6$	
	$y_1 + y_2 + y_3 = 3(11)$	
	And $OP = PC$	
	$\Rightarrow z = \frac{c}{2}$	
	Hence co-ordinate of $P\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$	
15.		
16.		
17.		
18.		
19.		
20.		
21.		
22.		
23.		
24.		
25.		
26.		
27.		
28.		
29.		
30.		
31.		
32.		
33.		
34.		
35.		
36.		
37.		
38.		
39.		
40.		
41.		
42.		
43.		
44.		
45.		
46.		
47.		
		1

48.		
49.		
50.		
51.		
52.		
53.		
54.		
55.		
56.		
57.		
58.		
59.		
60.		
61.		
62.		
63.		
64.		
65.		
66.		
67.		
68.		
69.		
70.		
71.		
72.		
73.		
74.		
75.		
76.		
77.		
78.		
79.		
80.		
81.		
82.		
83.		
84.		
85.		
86.		
87.		
88.		
89. 90.		
91. 92.		
93. 94.		
95.		
96.		1

97.	
98.	
99.	
100.	
101.	
102.	
103.	
104.	
105.	
106.	
107.	
108.	
109.	
110.	
111.	
112.	
113.	
114.	
115.	
116.	
117.	
118.	
119.	
120.	
121.	
122.	
123.	
124.	
125.	
126.	
127.	
128. 129.	
129.	
130.	
131.	
132.	ļ
133.	
135.	
136.	
137.	
138.	
139.	
140.	
141.	
142.	
143.	
144.	
145.	

146.	
147.	
148.	
149.	
150.	