CHAPTER-2 RELATIONS & FUNCTIONS 04 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Let A = {1, 2} and B = {2, 4, 6}. Let f = {(x, y) : $x \in A$, $y \in B$ and $y > 2x + 1$ }.	4
	Write f as a set of ordered pairs. Show that f is a relation but not a function	
	from A to B	
2.	Let R+ be the set of all positive real numbers. Let $f : R+ \rightarrow R : f(x) = \log x$. Base e	4
	Find	
	(i) Range (f)	
	(ii) $\{x : x \in R + and f(x) = -2\}.$	
	(iii) Find out whether $f(x + y) = f(x)$. $f(y)$ for all x, y $\in \mathbb{R}$.	
3.	Let $A = \{5,7\}$ and $B = \{9,13\}$	4
	Let $R = \{(x, y) : x \in A, y \in B, x - y = odd integer\}$	
	Show that R is an empty relation from setA to setB	
4.	Find the domain range of $f(x) = \frac{1}{\sqrt{x - [x]}}$	4

ANSWERS:

Q. NO ANSWER 1. Given: A = {1, 2} and B = {2, 4, 6} $f = {(x, y): x \in A, y \in B and y > 2x + 1}$ Putting x = 1 in y > 2x + 1, we get	MARKS
Putting $x = 1$ in $y > 2x + 1$, we get	
y > 2(1) + 1	
\Rightarrow y > 3	
and $y \in B$	
this means $y = 4$, 6 if $x = 1$ because it satisfies the condition $y > 3$	
Putting $x = 2$ in $y > 2x + 1$, we get	
y > 2(2) + 1	
\Rightarrow y > 5	
this means $y = 6$ if $x = 2$ because it satisfies the condition $y > 5$.	
$\therefore f = \{(1, 4), (1, 6), (2, 6)\}$	
(1, 2), (2, 2), (2, 4) are not the members of 'f' because they do not satis the given	sfy
condition $y > 2x + 1$	
Firstly, we have to show that f is a relation from A to B.	
First elements = 1, 2	
All the first elements are in Set A	
So, the first element is from set A	
Second elements in $F = 4, 6$	
All the second elements are in Set B	

	So, the second element is from set B	
	Since the first element is from set A and second element is from set B	
	Hence, F is a relation from A to B.	
	Function:	
	(i) all elements of the first set are associated with the elements of the second set.	
	(ii) An element of the first set has a unique image in the second set.	
	Now, we have to show that f is not a function from A to B	
	f = {(1, 4), (1, 6), (2, 6)}	
	Here, 1 is coming twice.	
	Hence, it does not have a unique (one) image.	
	So, it is not a function.	
2.	Given that f: $R+\rightarrow R$ such that $f(x) = \log x$	
	To find: (i) Range of f	
	Here, $f(x) = \log x$	
	We know that the range of a function is the set of images of elements in	
	the domain.	
	\therefore The image set of the domain of f = R	
	Hence, the range of f is the set of all real numbers.	
	To find: (ii) $\{x : x \in R + and f(x) = -2\}$ We have, $f(x) = -2$ (a)	
	And $f(x) = \log x(b)$	
	From eq. (a) and (b), we get	
	$\log x = -2$	
	Taking exponential both the sides, we get	
	$\Rightarrow x = e^{-2}$	
	\therefore {x : x \in R+ and f(x) = -2} = {e ⁻²	
	To find: (iii) $f(xy) = f(x) + f(y)$ for all x, y $\in \mathbb{R}$	
	We have,	
·		

	$f(xy) = \log(xy)$	
	$= \log(x) + \log(y)$	
	[Product Rule for Logarithms]	
	= f(x) + f(y) [::f(x) = logx]	
	$\therefore f(xy) = f(x) + f(y) \text{ holds.}$	
3.	$A = \{5,7\}, B = \{9,13\}$	
	$A \times B = \{(5,9), (5,13), (7,9), (7,13)\}$	
	Every relation is a subset of $A \times B$	
	$R = \{(x, y): x \in A, y \in B, x - y = An \text{ odd ingteger}\}$ Now $(5 - 9) = -4$, $(5 - 13) = -8$, $(7 - 9) = -2$, $(7 - 13) = -6$	
	We see that every ordered pair (x, y) of $A \times B$, $x - y$ is not odd, i.e, no $(x, y) \in R$	
	Hence, R is an empty relation.	
4.		
ч.	We have, $f(x) = \frac{1}{\sqrt{x - [x]}}$	
	Domain of f: We know that	
	$0 \le x - [x] < 1 \text{ for all } x \in R$	
	and $x - [x] = 0$ for $x \in Z$	
	$\therefore 0 < x - [x] < 1 \text{ for all } x \in R - Z$	
	$\Rightarrow f(x) = \frac{1}{\sqrt{x-[x]}}$ exists for all $x \in R - Z$	
	Hence, Domain $(f) = R - Z$	
	Range of <i>f</i> : We have	
	$0 < x - [x] < 1 \text{ for all } x \in R - Z$	
	$\Rightarrow 0 < \sqrt{x - [x]} < 1 \text{ for all } x \in R - Z$	
	$\Rightarrow 1 < \frac{1}{\sqrt{x-[x]}} < \infty \text{ for all } x \in R - Z$	
	$\Rightarrow 1 < f(x) < \infty \text{ for all } x \in R - Z$	
	Range $(f) = (1, \infty)$	