CHAPTER-4 DETERMINANTS 04 MARK TYPE QUESTIONS

	U4 MARK TYPE QUESTIONS	1
Q. NO	QUESTION	MARK
1.	 Two schools X and Y want to award their selected students on the values of Hard work, Honesty and Punctuality. The school X wants to award Rupees P each, Rupees q each and Rupees r each for the three respective values to its 3,2 and 1 students respectively with a total award money of Rupees 3000/- School wants to spend rupees 3500/- to award in 2,4 & 3 students on the respective values. The total amount of awards for one prize on each value is Rupees 1500/ Using the concept of Determinants & matrices, Answer the following questions What is the award money for punctuality? 300 a. 500 b. 300 c. 900 d. 1000 	4
2.		4
	Show that, using properties of determinants.	.
	$1+a^2-b^2$ 2ab -2b	
	2ab $1-a^2+b^2 = 2a = (1+a^2+b^2)^3$	
	$ \begin{array}{cccc} 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{array} = \left(1+a^2+b^2\right)^3 $	
3.		
	 A triangular floral design is made up of 36 smaller equilateral triangles as shown in the figure. Using the above information and the concept of determinants, answer the following questions. (i) If the vertices of one of the smaller equilateral triangle are (3,1), (9,3) and (5,3), then the area of such triangle is (a) 4 sq. u (b) 6 sq. u (c) 10 sq. u (d) 8 sq. u (ii) What is the area of design? (a) 72 sq.u (b) 104 sq.u (c) 144 sq. u (d) 10 sq.u (iii) If the vertices of one of the smaller equilateral triangle are (0,0), (3,√3) (3,-√3), then the altitude of such triangle is ? (a) 4 u (b) 6 u (c) 3 u (d) 8 u (iv) If (2,4), (2,6) are two vertices of smaller triangle and its area is 3√3 sq. units, then the third vertex will lie on the line (a) x + y = 5 (b) x - y = 5 (c) x = 2±3√3 (d) 2x + y = 3 	4

4.	A missile launched to hit its target follows a parabolic path. Its velocity at any instant 't' is		
	given by $v(t) = at^2 + bt + c, 0 \le t \le 100$, where a,b and c are constants. It has been found that		
	given by where a,b and c are constants. It has been found that		
	the velocity at time t=3, t=6 and t=9 seconds are respectively 64,133 and 208 miles per		
	second.		
	$\begin{bmatrix} 9 & 3 & 1 \end{bmatrix}^{-1}$ $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$	4	
	If $\begin{bmatrix} 9 & 3 & 1 \\ 36 & 6 & 1 \\ 81 & 9 & 1 \end{bmatrix}^{-1} = \frac{1}{18} \begin{bmatrix} 1 & -2 & 1 \\ -15 & 24 & -9 \\ 54 & -54 & 18 \end{bmatrix}$, then answer the following questions.	4	
	$\begin{vmatrix} 81 & 9 & 1 \end{vmatrix} = \begin{vmatrix} 18 \\ 54 & -54 & 18 \end{vmatrix}$		
	(i) Find the value of b+c.		
	(ii) Find $v(t)$.		
	(iii) Calculate the speed at time t=15 seconds.		
	(iv) At what time the missile acquires a speed of 784 miles/sec?		
5.	Chandrayaan 3 is the third lunar exploration mission		
	undertaken by the Lindian Space Research Organisation		
	(ISRO). It aims to further expand our understanding of		
	the Moon's surface by deploying a Lander and a rover.		
	During its launch stage, it's follows a definite trajectory		
	and velocity of the rocket can be expressed as a function		
	of time(t) as follows:		
	$v(t) = 140at^2 + 3bt - 130c - M$		
	where a, b and c are constants of unknown values and M accounts for the mass of the rocket		
	which satisfies		
	4a + b - 2c + 58 = 0		
	2a + b - c + 35 = 0		
	-7a - 2b + 4c = 113		
	Use the value of AB to solve the above system of equations and obtain the value of a, b and		
	c.	4	
6.	A trust invested some money in two type of bonds . The first bond pays 10% interest and second bond pays 12% interest. The trust received Rs 2400 as interest . However, if trust had		
	interchanged money in bonds they would have got Rs 100 less.		
	Let the amount invested in first type and second type of bond be Rs x and Rs y.	4	
	Based on the above information ,answer the following questions;	4	
	(i) Write the equations in terms of x and y representing the given information.		
	(ii) Write the matrix equation representing the given information.		
7.	Find the amount invested by trust in first and second bond respectively. Manjit wants to donate a rectangular plot of land for a school in his village. When he was asked to	4	
7.	give dimensions of the plot, he told that if its length is decreased by 50 m and breadth is increased by	4	
	50 m, then its area will remain same, but if length is decreased by 10 m and breadth is decreased by		
	20m, then its area will decreasey5300 m ²	1	

8	Based on the information given above, answer the following questions : i) The value of x(length of rectangular field) is (a) 150 m b) 400 m c) 200 m d) 320 m ii) The value of y (breadth of rectangular field) is (a) 150 m b) 200 m c) 430 m d) 350 m iii) How much is the area of rectangular field? a) 60000 sq m b) 30000 sq m c) 3000 sq m d) 30000 m iv) The equations in terms of x and y are a. $x+y = 50$, $3x-y = 550$ b.x-y=50, $2x+y=550c. x+y= 50$, $2x+y=550d.x+y= 50, 2x+y=550$	
8.	A factory produces three products every day. Their production on a particular day is 45 tones. It is found that production of third product exceeds the production of first product by 8 tons while production of first and third products is twice the production of second product.	.4
9.	 Three shopkeepers Ram Lal, Shyam Lal, and Ghansham are using polythene bags, handmade bags (prepared by prisoners), and newspaper envelopes as carrying bags. It is found that the shopkeepers Ram Lal, Shyam Lal, and Ghansham are using (20,30,40), (30,40,20), and (40,20,30) polythene bags, handmade bags, and newspaper envelopes respectively. The shopkeeper's Ram Lal, Shyam Lal, and Ghansham spent ₹250, ₹270, and ₹200 on these carry bags respectively. 1. What is the cost of one polythene bag? 2. What is the cost of one handmade bag? 3. What is the cost of one newspaper bag? 	4

	Keeping in mind the environmental conditions, which shopkeeper is better?					
10.	purpose and the time (in minutes) required for each toy on the machines is given below:					4
	Types of Machines					
	Toys	Ι	II	III		
	A	20	10	10		
	B	10	20	30		
	C	5	25	15		
					rs, 2 hours and 2 hours 30 toys to be produced using	
	determinants?	(very: 110 w	cuir you mid ne	, or the three types of	to js to be produced using	
11.		ix such tha	$t A \begin{bmatrix} 1 & 2 \end{bmatrix} is as$	scalar matrix and [3A]	=108 then what will be the	4
			110 3] ¹⁰ ¹¹			
12	value of A^2 .	ır1 2ı	<u>r1 n 11 i</u>	1 701		4
12.	$\begin{bmatrix} If & I \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & 2 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 70 \\ 0 & 1 \end{bmatrix}$, then find the	e inverse of the matrix	4
	$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}.$	• 1	0 1	0		
	v -					-
13.					arket to purchase vegetables.	4
					tal of Rs. 21. Ravi purchased sh purchased 6kg Potato,2kg	
	Onion and 3kg l		-		shi purchused okg Totuto,2kg	
		5				
		-		-	Z respectively then convert	
			into system of 1	-		
			-	in (i) in the form of A	AX=B.	
	(iii) Find	the cost of	potato ,onion a	nd brinjal.		
14.	Gautam huvs	5 nens	R hags and 1 i	nstruments hox an	d pays a sum of Rs 160.	4
					d pays a sum of Rs. 190.	-
					pays a sum of Rs. 250.	
	Alikul buys I	pen, z ba	igs and 4 msti	unient boxes and	pays a sum of Ks. 250.	
	(i) com	vort the c	ivon abovo si	tuation into system	n of Linear equations.	
			Sivell above SI	tuation into system	n or Linear Equations.	
	(ii) Find					
	(iii) Find	I A⁻¹				
						<u> </u>

Q. NO ANSWER MARKS According to statement 1. 4 3p+2q+r=3000 2p+4q+3r=3500 p+q+r=1500Converting the system of equations in matrix form, we get [3 2 3 2 4 $\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1500 \end{bmatrix}$ i.e AX=B Where $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 1 \end{bmatrix} X = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$ $B = \begin{bmatrix} 3000 \\ 3500 \end{bmatrix}$ L1500 $|A| = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 3 \end{bmatrix}$ 1 1 1 =3(4-3)-2(2-1)+1(6-4)=3×1-2×1+1×2=3-2+2=3 3≠0 $A^{-1} = \frac{\text{adjA}}{1}$ $X = A^{-1}B$ |A| $adjA = [cofactors of A]^T$ -21 1 cofactors of A = 2 -1 -1 -7 2 8] 2 -1 1 adjA= 2 1 -7 8 2 -1 2 2 -7 1 2 -7 1 $^{-1}$ adjA 2 -1 8 1 A. A 3 8 ^{1}B X=A $\frac{2}{3}$ -7 33 2 3 3 1 3 [3000] 2300 $\begin{bmatrix} \frac{3}{-2} & \frac{3}{-1} & \frac{3}{3} \\ 1000 - 1100 + 1000 \\ 1000 + 2200 - 3500 \end{bmatrix} = \begin{bmatrix} 900 \\ -300 \end{bmatrix}$ l1500J $\lfloor 2000 - 1100 + 4000 \rfloor \lfloor 900 \rfloor$ p=900, q=-300, z=900 2. $R_1 \rightarrow R_1 + b.R_3$ 4

ANSWERS:

	$1+a^2+b^2$ 0 $-b(1+a^2+b^2)$	
	$L.H.S = 2ab \qquad 1 - a^2 + b^2 \qquad 2a$	
	$2b$ $-2a$ $1-a^2-b^2$	
	Taking common $(1 + a^2 + b^2)$ from R ₁	
	1 0 -ь	
	$= 1 + a^{2} + b^{2} 2ab = 1 - a^{2} + b^{2} 2a 2b - 2a 1 - a^{2} - b^{2}$	
	$2b$ $-2a$ $1-a^2-b^2$	
	$R_1 \rightarrow R_1 - a.R_3$	
	1 0 -ь	
	$=1+a^{2}+b^{2} \begin{vmatrix} 1 & 0 & -b \\ 0 & 1+a^{2}+b^{2} & a(1+a^{2}+b^{2}) \\ 2b & -2a & 1-a^{2}-b^{2} \end{vmatrix}$	
	$2b$ $-2a$ $1-a^2-b^2$	
	Taking $(1 + a^2 + b^2)$ common from R ₂	
	1 0 -b	
	$=1+a^{2}+b^{2} \begin{vmatrix} 1 & 0 & -b \\ 0 & 1 & a \\ 2b & -2a & 1-a^{2}-b^{2} \end{vmatrix}$	
	Expending entry R ₁	
	$= (1 + a^{2} + b^{2})^{2} [1(1 - a^{2} - b^{2} + 2a^{2}) - b(-2b)]$	
	$= (1 + a^{2} + b^{2})^{2} [1 + a^{2} - b^{2} + 2b^{2}]$	
	$= (1 + a^{2} + b^{2})^{2}(1 + a^{2} + b^{2})$	
	$=(1+a^2+b^2)^3$	
3.	(i) (a) 4 sq units (ii) (c) 144 sq. units	4
	(ii) (c) 3 units (iv) (c) $x = 2 \pm 3\sqrt{3}$	
4.	v(3) = 64, v(6) = 64 and v(6) = 133	4
	\Rightarrow 9a+3b+c=64;36a+6b+c=133 and 81a+9b+c=208	
	In matrix form $\begin{bmatrix} 9 & 3 & 1 \\ 36 & 6 & 1 \end{bmatrix}$, $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 64 \\ 133 \end{bmatrix} \Rightarrow A \cdot X = B \Rightarrow X = A^{-1}B$	
	In matrix form $\begin{vmatrix} 36 & 6 & 1 \end{vmatrix}$, $b = \begin{vmatrix} 133 \end{vmatrix} \Rightarrow A \cdot X = B \Rightarrow X = A^{-1}B$	
	$\begin{bmatrix} 81 & 9 & 1 \end{bmatrix} \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 208 \end{bmatrix}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$=\frac{1}{18}\begin{bmatrix}1 & -2 & 1\\-15 & 24 & -9\\54 & -54 & 18\end{bmatrix}\begin{bmatrix}64\\133\\208\end{bmatrix} = \begin{bmatrix}1/3\\20\\1\end{bmatrix} \Rightarrow a = 1/3; b = 20 \text{ and } c = 1$	
	(i) $\Rightarrow b + c = 21$	
	(ii) $v(t) = \frac{1}{3}t^2 + 20t + 1$	
	5	
	(iii) $v(15) = 376 \text{ miles / sec}$ (iv) 27 seconds.	
5.	$\begin{bmatrix} 4 & 1 & -2 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -58 \\ -25 \end{bmatrix}$	4
	$A = \begin{bmatrix} 4 & 1 & -2 \\ 2 & 1 & -1 \\ -7 & -2 & 4 \end{bmatrix} X = \begin{bmatrix} a \\ b \\ c \end{bmatrix} B = \begin{bmatrix} -58 \\ -35 \\ 113 \end{bmatrix}$	
	So,X = A^{-1} B Solving the above condition $a = -3$, $b = -12$, $c = 17$	
6.	(i) As per given information : 10x/100 + 12y/100 = 2800	4
	$\frac{10x}{100} + \frac{12y}{100} = 2800$	

	10 /100 10 /100 0700	
	12x/100 + 10y/100 = 2700	
	After simplifying the equations are $5x + 6y = 140000$, $6x + 5y = 135000$	
	(ii) Let $A = \begin{bmatrix} 5 & 6 \\ 6 & 5 \end{bmatrix}$, $X = \frac{x}{y}$ and $B \begin{pmatrix} 140000 \\ 135000 \end{pmatrix}$	
	(iii) Given system on be written as $AX = B$	
	Where $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 5 \end{bmatrix} = 25 - 36 = -11$	
	-0 5-	
	$\Rightarrow A^{-1} \text{ exist.}$	
	Now, $X = A^{-1}B$	
7.	After solving we get, $x = 10000$ and $y = 15000$ i b ii a iii b iv b	4
		4
8.	4. By given information $x + y + z = 45$, $-x + z = 8$, $x - 2y + z = 0$ In matrix form $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 45 \\ 8 \\ 0 \end{bmatrix}$ 5. We know that $(A')^{-1} = (A^{-1})'$	4
	5. We know that $(A')^{-1} = (A^{-1})^{-1}$ $\therefore \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{bmatrix}^{-1} = \frac{1}{6} \begin{bmatrix} 2 & 3 & 1 \\ 2 & 0 & -2 \\ 2 & -3 & 1 \end{bmatrix}$ 6. $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 3 & 1 \\ 2 & 0 & -2 \\ 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 45 \\ 8 \\ 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 66 \\ 90 \\ 114 \end{bmatrix} = \begin{bmatrix} 11 \\ 15 \\ 19 \end{bmatrix}$	
	6. $\begin{bmatrix} y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 0 & -2 \\ 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 8 \\ 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 90 \\ 114 \end{bmatrix} = \begin{bmatrix} 15 \\ 19 \end{bmatrix}$ $\therefore x : y : z = 11 : 15 : 19$	
9.	Let the cost of one polythene bag, one handmade bag, one newspaper bag be R x,y, z	
	respectively.	
	Then	
	20x+30y+40z=250 i e $2x+3y+4z=25$	
	30x+40y+20z=270 i e $3x+4y+2z=27$	
	40x+20y+30z=200 i e $4x+2y+3z=20$	
	These can be written as	
	AX=B where	
	$A = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 2 \\ 4 & 2 & 3 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, B = \begin{pmatrix} 25 \\ 27 \\ 20 \end{pmatrix}$	
	Det A=16-3-40=-27,	
	$Adj A = \begin{pmatrix} 8 & -1 & -10 \\ -1 & -16 & 8 \\ -10 & 8 & -1 \end{pmatrix}, A^{-1} = Adj A / det A$ $X = A^{-1} B = 1/(-27) \begin{pmatrix} 8 & -1 & -10 \\ -1 & -16 & 8 \\ -10 & 8 & -1 \end{pmatrix} \begin{pmatrix} 25 \\ 27 \\ 20 \end{pmatrix} = \begin{pmatrix} 1 \\ 11 \\ 2 \end{pmatrix}$	
	$\begin{pmatrix} -10 & 8 & -17 \\ 8 & -1 & -10 \\ 25 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	
	X=1,y=11,z=2	
	1. cost of one polythene bag=Rs 1 2 = aost of one handmade bag=Rs 11	
	 cost of one handmade bag=Rs 11 cost of one newspaper bag=Rs 2 	1
	newspaper bag is better for environment.	1
		1
		1
10.	Let no of the three types of toys be x, y, z.	1/2
	20x+10y+5z=180, 10x+20y+25z=120, 10x+30y+15z=120	
		1/2
L		

		T
	AX=B where A= $\begin{pmatrix} 20 & 10 & 5\\ 10 & 20 & 25\\ 10 & 30 & 15 \end{pmatrix}$, B= $\begin{bmatrix} 180\\ 120\\ 120\\ 120 \end{bmatrix}$; X= $\begin{bmatrix} x\\ y\\ z \end{bmatrix}$	1⁄2
	detA=-1500 $Adj A = \begin{pmatrix} -450 & 0 & 150 \\ 100 & 250 & -450 \end{pmatrix}, A^{-1} = Adj A / det A$	1/2
	$ \begin{array}{l} \operatorname{Adj} A = \begin{pmatrix} -450 & 0 & 150 \\ 100 & 250 & -450 \\ 100 & -500 & 300 \end{pmatrix}, A^{-1} = \operatorname{Adj} A / \det A \\ X = A^{-1} B = 1/(-1500) \begin{pmatrix} -450 & 0 & 150 \\ 100 & 250 & -450 \\ 100 & -500 & 300 \end{pmatrix} \begin{bmatrix} 180 \\ 120 \\ 120 \\ 120 \end{bmatrix} = \begin{bmatrix} 42 \\ 40 \\ 40 \end{bmatrix} $	1
	So x=42,y=40,z=40	1
11.	Let, $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ According to the given condition, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} \gamma & 0 \\ 0 & \gamma \end{bmatrix}$ for some scalar γ . Or, $a = \gamma$, $2c + 3d = \gamma$, $c = 0$, $2a + 3b = 0$ Therefore, $a = \gamma, b = \frac{-2\gamma}{3}$, $c = 0$, $d = \frac{\gamma}{3}$ 3A = 108 Or, $ A = 12$ Also, $ A = \frac{\gamma^2}{3}$ So, $\frac{\gamma^2}{3} = 12$ Or, $\gamma = \pm 6$	4
	Therefore, $A = \begin{bmatrix} 6 & -4 \\ 0 & 2 \end{bmatrix}$ When $\gamma = 6$	
12.	$A^{2} = \begin{bmatrix} 36 & -32 \\ 0 & 4 \end{bmatrix}$ Given, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$ Or, $\begin{bmatrix} 1 & 1+2+3+\dots+(n-1) \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$ Or, $\frac{n(n-1)}{2} = 78$ Or, $n = 13 \text{ as } n \neq -12$ $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 13 \\ 0 & 1 \end{bmatrix} = A(Say)$ Therefore, $A^{-1} = \begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$	4

13.	(i) $x + y + z = 21$, $4x + 3y + 2z = 60$, $6x + 2y + 3z = 70$	1
	(<i>ii</i>) $\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & 2 \\ 6 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 21 \\ 60 \\ 70 \end{bmatrix}$ (<i>iv</i>) $x = \text{Rs } 5$, $y = \text{Rs } 8$, $z = \text{Rs} . 8$	1 2
14.	(i) $5x + 3y + z = 160$, $2x + y + 3z = 190$, $x + 2y + 4z = 250$	1
	(ii) IAI= -22	1
	(ii) IAI= -22	2
	(iii) $A^{-1} = \frac{1}{22} \begin{bmatrix} 2 & 10 & -8 \\ 5 & -19 & 13 \\ -3 & 7 & 1 \end{bmatrix}$	