CHAPTER-7 PERMUTATIONS & COMBINATIONS 05 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how	5
	(i) four cards belong to four different suits?	
	(ii)two are red cards and two are black cards?	
	(iii) four cards are of the same suit?	
	(iv) four cards are face cards?	
	(v) cards are of the same colour?	
2.	Members of the XYZ group, Ravi , Rahul , Kunal, Gyatri, Geeta and sunita are seated in a	5
	 row for photo session. (i) Total numbers of ways of sitting arrangement of seven members ? (ii) Total number of arrangements so that Ravi and Gyatri are at extreme positions. (iii) Total number of arrangements if Geeta is sitting in the middle. (iv) Total number of arrangement if Kunal and Geeta are sit together. (v) Total number of arrangement if Kunal and Geeta never sit together. 	
3.	In a company , CEO wants to established a new branch, new branch required a committed	5
	of 5 numbers is to be formed out of 6 gents & 4 ladies .	
	In how many ways this can be done, when	
	i) At least two ladies are included.	
	ii) At most two ladies are included.	
4.	The longest rivers of north America is MISSISSIPPI River.	5
	How many ways can the letters of the word MISSISSIPPI be arranged such that	
	i) All letters are used.	
	ii) All I's are together.	
	iii) All I's are not together.	
	iv) All S's are not together.	
5.		5

	During the math class, a teacher clears the concept of permutation and combination to the				
	11th standard students. After the class was over he asks the students some questions.				
	(i) How many numbers between 99 and 1000 (bothexcluding) can be formed such				
	that every digit is either 3 or 7.				
	(ii) How many numbers between 99 and 1000 (both excluding) can be formed such				
	that there is no restriction				
	(iii) The number of numbers lying between 99 and 1000 which can be formed using the digits 2, 3, 7, 0, 6, 8 when no digit is being repeated				
	(iv) How many numbers between 99 and 1000 (both excluding) can be formed such				
	that the digit in hundred's place is 7.				
	(v) How many numbers are there between 99 and 1000 which have exactly one of their				
	digits as 7?				
6.		5			
0.		5			
	Four friends are playing with cards. They are choosing 4 cards from a pack of 52 playing				
	cards. Using these information answer the following questions.				
	(i) How many of these four cards are of the same suit?				
	(ii) How many of these four cards belong to four different suits?				
	(iii) How many of these four cards are face cards?				
	(iv) How many of these two are red cards and two are black cards?				
	(v) How many of these four cards are of the same colour?				
7.	Arrangement of the letters of the word INSTITUTIONS than find:-	5			
	(a) Total arrangement.				
	(b) If all vowels come together.				
	(c) If no vowels come together.				
	(d) Starting with I and end with S.				
	(e) All vowels come together and all consonant come together.	<u>ر</u>			
8.	Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find	5			
	(a) How many numbers are formed?				
	(b) How many numbers are exactly divisible by 2?				
	(c) How many numbers are exactly divisible by 25?(d) How many of these are exactly divisible by 4?				
	(e) How many even number can be formed?				
	(c) now many even number can be formed:				

ANSWERS:

Q. NO	ANSWER	MARKS	
1.	(i) There are four suits (diamond, spade, club and heart) of 13 cards each. Therefore,	5	
	there are 13C4 ways of choosing 4 diamond cards, 13C4 ways of choosing 4 club		
	cards, 13 C4 4 ways choosing 4 spade cards and 13C4 ways of choosing heart cards.		
	Required number of ways 13C4+13C4+ 13C4+ 13C ₁ =4x 13C4=4x 13! 914! =2860		
	(ii) There are 13 cards in each suit. Four cards drawn belong to four different suits		
	means one card is drawn from each suit. Out of 13 diamond cards one card can be		
	drawn in ¹³ C, ways. Similarly, there are ¹³ C, ways of choosing one club card, ¹³ C, ways		
	of choosing one spade card and ¹³ C, ways of choosing one heart card.		
	Number of ways of selecting one card from each suit = ${}^{13}C_1 \times {}^{13}C_1 \times {}^{13}C_1 \times {}^{13}C_1 = 13^4$		
	(iii) There are 12 face cards out of which 4 cards can be chosen in $^{12}C_4$ ways.		
	Required number of ways = ${}^{12}C_4$ = 495 ways		
	(iv) There are 26 red cards and 26 black cards. Therefore, 2 red cards can be chosen		
	in 26 C ₂ ways and 2 black cards can be chosen in 26 C ₂ ways. Hence, 2 red and 2 black		
	cards can be chosen in		
	26! 24! 2! =(325) ² =105625 ways.		
	(v) Out of 26 red cards, 4 red cards can be chosen in ${}^{26}C_4$ ways. Similarly, 4 black cards		
	can be chosen in ²⁶ C ₄ ways.		
	Hence, 4 red or 4 black cards can be chosen in 26 C ₄ + 26 C ₄ = 2 x 26 C ₄ = 29900 ways		
2.	 (i) Total numbers of ways of sitting arrangement of seven members = 7! = 5040 	5	
	 (ii) Total number of arrangements so that Ravi and Gyatri are at extreme positions = 		
	Ravi Gyatri		
	Gyatri Ravi		
	 = 2 x 5! = 2 x 120 = 240 (iii) Total number of arrangements if Geeta is sitting in the middle. 		
	$= 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$		
	(iv) Total number of arrangement if Kunal and Geeta are sit together.		
	Kunal ,Geeta = 2 x 6! = 1440		
	 (v) Total number of arrangement if Kunal and Geeta never sit together. 		
	Total arrangement – always together = $5040 - 1440 = 3600$		

3.	i)	At least two ladies are included. No of ways = $4c_2X 6c_3 + 4c_1X 6c_4 +$	5
		$4c_0 X 6c_5 = 186$	
	ii)	At most two ladies are included. No. of ways = $4c_2 X 6c_3 + 4c_1 X 6c_4 +$	
		$4c_0 X 6c_5 = 186$	
4.	i)	All letters are used = $\frac{11!}{4!.4!.2!}$ = 34560	5
	,		
	ii)	All I's are together = $\frac{8!}{4!.2!}$ = 840	
	iii)	All I's are not together = 34560 – 840 = 33810	
	iv)	All S's are not together = $\frac{11!}{4!.4!.2!} - \frac{8!}{4!.2!} = 34560 - 840 = 33810$	
5.	(i)	When there are three 3's=1	5
		When two 3's and one $7's=3!/2!=3$	
		When one 3 and two 7's $=3!/2!=3$	
		When three 7 's=1 Total possible number= $1+2+2+1=8$	
	(ii)	Total possible number=1+3+3+1=8 Total possible number=900	
	(iii)	Digits are 2, 3, 7, 0, 6, 8 i.e. six in all.	
		We have to form a number between 99 and 1000. Clearly, they will be of three	
		digits and their number will be ${}^{6}P_{3}=6\times5\times4=120$	
		Out of these, we have to exclude those numbers of 3 digits which have zero in the	
		first place.	
		When the first place is filled by 0, remaining numbers can be arranged 5^{5}	
		in ${}^{5}P_{2}$ ways.	
		Their number is ${}^{5}P_{2}=5\times4=20$	
	(iv)	\therefore The required number is 120-20=100 Total possible number= $1 \times 10 \times 10 = 100$	
	(\mathbf{v})	Let a 3-digit number ABC	
	Case (1)		
	• •	en B and C can be any digit but not 7	
	so, total 9	digits (0,1,2,3,4,5,6,8,9) can replace B and C	
		such combinations $=1(9)(9)=81$	
	Case (2)		
		en A can be any digit but not 0 and 7, because if $A=0$ it will be a 2-digit number.	
		h be any digit but not 7 combinations $-(9)(1)(0) = 72$	
	Case (3)	combinations = $(8)(1)(9)=72$	
		en A can be any digit but not 0 and 7, because if A=0 it will be a 2-digit number.	
		n be any digit but not 7	
		combinations = $(8)(9)(1)=72$	
		umbers between 99 and 1000 which have exactly one of their digits	
	as 7 are $=8$	81+72+72=225	
6.	(i)	Required number of ways= ${}^{13}C_4 + {}^{13}C_4 + {}^{13}C_4 + {}^{13}C_4 = 4 \times {}^{13}C_4 = 2860$	5
	(ii)	Required number of ways= ${}^{13}C_1 \times {}^{13}C_1 \times {}^{13}C_1 \times {}^{13}C_1 = 13^4$	
	(iii)	Required number of ways= ${}^{12}C_4=495$	
	(iv)	Required number of ways= ${}^{26}C_2 \times {}^{26}C_2 = 105625$	
7.	(v)	Required number of ways= ${}^{26}C_4 + {}^{26}C_4 = 2 \times {}^{26}C_4 = 29900$ rd INSTITUTIONS . I – 3 , T – 3 ,S – 2 , N- 2,0 – 1 and U -1	5
7.		$\frac{10 \text{ INSTITUTIONS} \cdot 1 - 5}{12!} = 2, \text{ IN- } 2, 0 - 1 \text{ and } 0 - 1}$	5
		number of arrangements = $\frac{12!}{3!3!2!2!}$	
	(b)Vowel	s together are – IIIOU	
	Require n	number of arrangement vowels together $=\frac{5!}{3!}\frac{8!}{3!2!2!}$	
		re number of arrangement vowels not together $=\frac{5!}{3!} \frac{7!}{3!2!2!}$	
	()1	3! 3!2!2!	<u> </u>

	(d) number of arrangement starting with I and end with $S = \frac{10!}{2!3!2!}$ (e) Total arrangement. All vowels come together and all consonant come together= 2! $\frac{5!}{3!} \frac{7!}{3!2!2!}$	
8.	(a) number of ways 4 digit form = 7 X 6 X 5 X 4 = 840 (b) last digit is number divisible by two if 2,4 and 6 so last digit can be filled up three ways remaining digit can be filled up = 6 X 5 X 4 =120 Required number = 3 X 120 = 360 (c)) number divisible by twenty if last two digit is 25 or 75 so two digit can be filled in two so remaining digit can be filled up = 4 X 5 = 20 Required number = 2 X 20 = 40 (d)) number divisible by four if last two digit must be 12, 16, 24, 32, 36,52,56,64,72 and 76that is ten ways remaining two digit can be filled up = 4 X 5 = 20 Required number = 10 X 20 = 200 (e)if the number is even then last digit can be 2,4, and this can be filled in three ways so remaining three digit can be filled up = 6X 6 X 6 = 216 Required number = 216 X 3 = 648	5