CHAPTER-13 PROBABILITY 05 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK			
1.	Read the following passage and answer the following questions:				
	There are different types of Yoga which involve the usage of different poses of Yoga Asanas,				
	Meditation and Pranayam as shown in the figure below:				
	Anusara Yoga				
	Kundalini Yoga				
	Bikram Yoga				
	Hatha Yoga				
	The Venn diagram below represents the probabilities of three different types of Yoga A, B and C				
	performed by the people of a society. Further, it is given that probability of a member performing				
	type C Yoga is 0.44.				
	B				
	$0.32 \ 0.09 \ y \ x \ 0.21$				
	0.11				
	(i) Find the value of x				
	(ii) Find the value of v				
	(iii) Find $P(\frac{C}{2})$				
	(iii) Find the probability that a randomly selected person of the society does Yoga of type A				
	or B but not C.	_			
2.	Read the following text and answer the questions:	5			
	For an audition of a reality singing competition, interested candidates were asked to apply under				
	18 and above				
	The following information is known about the 2000				
	application received:				
	• 960 of the total applications were the folk genre.				
	 192 of the folk applications were for the below 18 				
	category.				
	 104 of the classical applications were for the 18 and 				
	above category.				
	(i)What is the probability that an application selected				
	at random is for the 18 and above category provided				
	It is under the classical genre?				
	under the below 18 category. Find the probability				
	that it is under the folk genre.				
3	Ramesh is going to play a game of chess against one of four opponents in an inter school	5			
5.	sports competition. Each opponent is equally likely to be paired against him. The table below	5			

	shows the chances of Ramesh losing, where paired against each opponent.						
		Opponent	Chance of losing				
		Opponent 1	12%				
		Opponent 2	60%				
		Opponent 3	<i>x</i> %				
		Opponent4	84%				
	If the probability that Ramesh loses the game that day is $\frac{1}{2}$, find the probability for Ramesh to						
	be losing when paired against opponent 3.						
4.	In a factory, machine A produces 30% of total output, machine B produces 25% and the machine C produces the remaining output. The defective items produced by machines A, B and C are 1%, 1.2%, 2% respectively. An item is picked at random from a day's output and found to be defective. Find the probability that it was produced by machine B?						
5.	Probability th probability th	at A speaks truth at actually it was	is $\frac{4}{5}$. A coin is toss head?	ed, A reports the head appears. What is the	5		
6.	A bag I conta contains 3 red then one ball probability th	ins 5 red and 4 wl l and 3 white balls is drawn from the at one red and one	hite balls and a bag s. Two balls are tran bag II. If the ball d e white ball are tran	II Insferred from the bag I to the bag II and rawn from the bag II is red, then find the sferred from the bag I to the bag II.	5		

ANSWERS:

Q. NO	ANSWER						
1.	(i) Given that probability of a member performing type C yoga is 0.44						
	x + 0.21 = 0.44						
	x = 0.23						
	(ii) $0.32 + 0.09 + y + x + 0.21 = 1 - 0.11$						
	y = 0.04						
	(iii) $P(C B) = \frac{P(C B)}{P(B)} = \frac{x}{0.09 + y + x} = \frac{25}{36}$						
	(iv) Required probability= $0.32 + 0.09 + y = 0.45$						
2.	According to the given information we construct the following table. 5						
	Given total applications=2000						
		Folk Genre	Classical Genre				
		960 (given)	2000-960=1040				
	Below 18	192 (given)	1040-104=936				
	18 or above 18	104 (given)					
		tion for falls conta					
	Let, E_1 = Event that application for folk genre						
	E_2 – Event that applied A = Event that applicat	ion for helow 18					
	A = Event that application for 18 or above 18						
		1040	104				
	P	$P(E_2) = \frac{1}{2000}$ and $P(B)$	$(1E_2) = \frac{1}{2000}$				
	(i)Required probability = $\frac{P}{r}$	$\frac{(B \cap E_2)}{P(E_1)} = \frac{1}{10}$					
	(ii) Required probability - i	$P\left(\frac{folk}{D}\right) = P\left(\frac{E_1}{D}\right) = P(E_1)$	$T_1 \cap A)$				
		$\left(\frac{1}{below \ 18}\right) - \frac{\Gamma}{\Gamma}\left(\frac{1}{A}\right) = \frac{\Gamma}{P}$					
	$P(E_1 \cap A) = \frac{192}{2000}$	and $P(A) = \frac{192+936}{2000} = \frac{112}{200}$	0				
	Required probability =	$\frac{192}{1128} = \frac{8}{47}$					
		1120 47					
3.	Note that						
		$P(F_{i}) = P(F_{i}) - P(F_{i})$	$= P(F_{\cdot}) = \frac{1}{2}$				
	$P(E_1) = P(E_2) = P(E_3) = P(E_4) = \frac{1}{4}$						
	2						
	(A) 12						
	$P\left(\frac{11}{F_{1}}\right) = 12\% = \frac{12}{100}$						
	(A) 60						
	$P\left(\frac{1}{E_0}\right) = 60\% = \frac{100}{100}$						
	(A) x						
	$P\left(\frac{1}{E_2}\right) = x\% = \frac{1}{100}$						
	(A) 84						
	$P\left(\frac{1}{E_4}\right) = 84\% = \frac{1}{100}$						
	Using total probability theorem, we have						
	P(A) = P(E) P(A) + P(E) P(A) + P(E) P(A)						
	$P(A) = P(E_1)P\left(\overline{E_1}\right) + P(E_2)P\left(\overline{E_2}\right) + P(E_3)P\left(\overline{E_3}\right) + P(E_4)P\left(\overline{E_4}\right)$						
	$ \begin{vmatrix} 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $						
	$\vec{2} = \frac{7}{2} - \frac{7}{4} + \frac{100}{100} + \frac{7}{4} + \frac{100}{100} + \frac{7}{4} + \frac{7}{100}$						
	$\Rightarrow x = 44$						

$$P\left(\frac{A}{E_3}\right) = 44\%$$
4. Consider the following events
 $E_1 = \text{item picked is produced by machine A}$
 $E_2 = \text{item picked is produced by machine B}$
 $E_3 = \text{item picked is produced by machine C}$
 $A = \text{producing a defective output}$
Given,
 $P(E_1) = 30\% = \frac{30}{100} = 0.3$
 $P(E_2) = 25\% = \frac{25}{100} = 0.25$
 $P(E_3) = 45\% = \frac{45}{100} = 0.45$
And
 $P\left(\frac{A}{E_1}\right) = 1\% = \frac{1}{100} = 0.12$
 $P\left(\frac{A}{E_2}\right) = 1.2\% = \frac{12}{100} = 0.12$
 $P\left(\frac{A}{E_3}\right) = 2\% = \frac{2}{100} = 0.02$
Required Probability is $P\left(\frac{E_2}{A}\right)$
 $P\left(\frac{E_2}{A}\right) = \frac{P(E_2)P\left(\frac{A}{E_2}\right)}{P(E_3)P\left(\frac{A}{E_1}\right) + P(E_3)P\left(\frac{A}{E_3}\right)}$
 $= \frac{0.25 \times 0.012}{0.3 \times 0.01 + 0.25 \times 0.012 + 0.45 \times 0.02} = \frac{300}{1500}$
 $= \frac{1}{5}$
5. E_1 : A speaks fully
Lat X he the event that a head appears.
 $P(E_2) = \frac{1}{2}$
 $P\left(\frac{E_2}{A}\right) = \frac{1}{2} - \frac{1}{2}$
 $P\left(\frac{E_2}{A}\right) = \frac{1}{2} + \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} - \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} + \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} + \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} + \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
 $P\left(\frac{E_1}{A}\right) = \frac{1}{2} + \frac{1}{2} +$

$$=\frac{4}{5}$$
6. Let E_1, E_2, E_3 and A are event such that
 $E_1 = Both$ transferred balls from bag I to bag II are red
 $E_2 = Both$ transferred balls from bag I to bag II are white
 $E_3 = Out$ of two transferred balls one is red and other is white
 $A = Drawing a red ball from bag II$
 $P(E_1) = \frac{5c_2}{9c_2} = \frac{5 \times 4}{9 \times 8} = \frac{20}{72} = \frac{5}{18}$
 $P(E_2) = \frac{4c_2}{9c_2} = \frac{4 \times 3}{9 \times 8} = \frac{12}{72} = \frac{3}{18}$
 $P(E_3) = \frac{5c_1 \times 4c_3}{9c_2} = \frac{5 \times 4 \times 2}{9 \times 8} = \frac{40}{72} = \frac{10}{18}$
 $P(\frac{A}{E_1}) = \frac{5}{8}, P(\frac{A}{E_2}) = \frac{3}{8}, P(\frac{A}{E_3}) = \frac{4}{8}$
 $P(\frac{E_3}{E_1}) = \frac{F(E_3) \times P(\frac{A}{E_3})}{P(E_1) \times P(\frac{A}{E_1}) + P(E_2) \times P(\frac{A}{E_2}) + P(E_3) \times P(\frac{A}{E_3})$
 $I = \frac{\frac{15}{18} \times \frac{4}{18}}{\frac{16}{18} \times \frac{4}{8} + \frac{10}{18} \times \frac{20}{37}}$