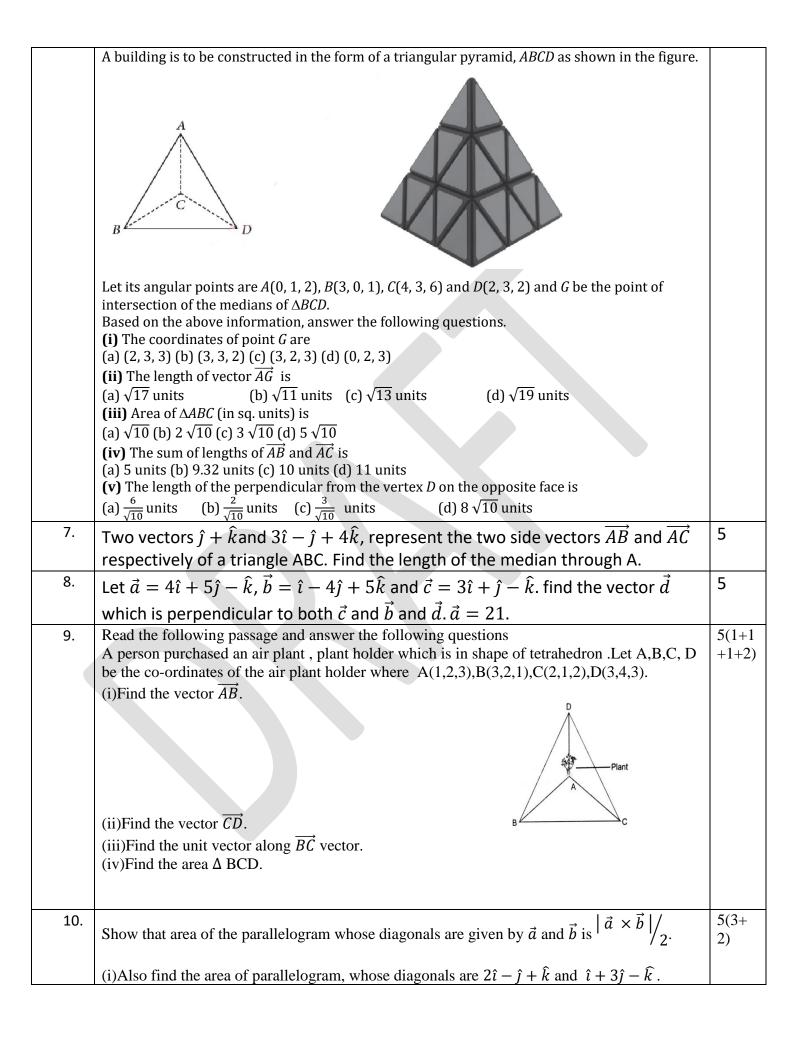
CHAPTER-10

VECTORS

05 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Let $\vec{a} = \hat{\imath} + 4j + 2\hat{k}$, $\vec{b} = 3\hat{\imath} - 2j + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} - j + 4\hat{k}$, find a vector \vec{d} which is perpendicular to	5
	both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{c} . \overrightarrow{d} = 15	
2.	If \overrightarrow{a} , , \overrightarrow{b} and \overrightarrow{c} are mutually perpendicular vectors of equal magnitudes show that the vector	5
	$\vec{a} + \vec{b} + \vec{c}$ is equally inclined to the \vec{a} , , \vec{b} and \vec{c} .	
3.	Find the position vector of the point which divides the join of the points $(2\vec{a}-3\vec{b})$ and $(3\vec{a}-2\vec{b})$ in the ratio, (i) internally, (ii) externally.	5
4.	Find the area of the parallelogram whose diagonals are represented by the vectors $\vec{d}_1 = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$ and $\vec{d}_2 = \hat{\imath} - 3\hat{\jmath} + 4\hat{k}$	5
5.	CSB1:	5
	Ishaan left from his village on weekend. First, he travelled up to temple. After this, he left for the zoo. After this he left for shopping in a mall. The positions of Ishaan at different places is given in the following graph. Do Shopping mall Zoo C 4 3 Willer Bo	
	Village $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Based on the above information, answer the following questions.	
	(i) Position vector of <i>B</i> is (a) $3\hat{i} + 5\hat{j}$ (b) $5\hat{i} + 3\hat{j}$ (c) $-5\hat{i} - 3\hat{j}$ (d) $-5\hat{i} + 3\hat{j}$	
	(ii) Position vector of D is (a) $5\hat{\imath} + 3\hat{\jmath}$ (b) $3\hat{\imath} + 5\hat{\jmath}$ (c) $8\hat{\imath} + 9\hat{\jmath}$ (d) $9\hat{\imath} + 8\hat{\jmath}$	
	(iii) Find the vector \overrightarrow{BC} in terms of $\hat{\imath}, \hat{\jmath}$ (a) $\hat{\imath} - 2\hat{\jmath}$ (b) $\hat{\imath} + 2\hat{\jmath}$ (c) $\widehat{2\imath} + \hat{\jmath}$ (d) $2\hat{\imath} - \hat{\jmath}$ (iv) Length of vector \overrightarrow{AD} is	
	(a) $\sqrt{67}$ units (b) $\sqrt{85}$ units (c) 90 units (d) 100 units (v) If $\vec{M} = 4j + 3k$, then its unit vector is	
	(a) $\frac{4}{5}\hat{i} + \frac{3}{5}\hat{j}$ (b) $\frac{4}{5}\hat{i} - \frac{3}{5}\hat{j}$ (c) $-\frac{4}{5}\hat{i} + \frac{3}{5}\hat{j}$ (d) $-\frac{4}{5}\hat{i} - \frac{3}{5}\hat{j}$	
6.	CSB2:	5



ANSWERS:

Q. NO	ANSWER	MARKS
1.	\vec{d} is ⊥ to \vec{a} and \vec{b} So, we take the cross product of \vec{a} and \vec{b} i.e. $(\hat{\mathbf{f}} + 4\hat{\mathbf{f}} + 2\hat{\mathbf{k}}) \times (3\hat{\mathbf{f}} - 2\hat{\mathbf{f}} + 7\hat{\mathbf{k}})$ = $0 - 2\hat{\mathbf{f}} \times \hat{\mathbf{f}} + 7\hat{\mathbf{f}} \times \hat{\mathbf{k}} + 12\hat{\mathbf{f}} \times \hat{\mathbf{f}} - 0 + 28\hat{\mathbf{f}} \times \hat{\mathbf{k}} +$ $6\hat{\mathbf{k}} \times \hat{\mathbf{f}} - 4\hat{\mathbf{k}} \times \hat{\mathbf{f}} + 0$ = $-2\hat{\mathbf{k}} - 7\hat{\mathbf{f}} - 12\hat{\mathbf{k}} + 28\hat{\mathbf{f}} + 6\hat{\mathbf{f}} + 4\hat{\mathbf{f}}$ = $32\hat{\mathbf{f}} - \hat{\mathbf{f}} - 14\hat{\mathbf{k}}$ \vec{d} would be a multiple of the obtained cross product, such that $\vec{c}.\vec{d} = 15$ $\rightarrow (2\hat{\mathbf{f}} - \hat{\mathbf{f}} + 4\hat{\mathbf{k}}).(32\lambda\hat{\mathbf{f}} - \lambda\hat{\mathbf{f}} - 14\lambda\hat{\mathbf{k}}) = 15$ $\rightarrow 64\lambda + \lambda - 56\lambda = 15$ ∴ $9\lambda = 15$ ∴ $\lambda = \frac{5}{3}$ ∴ $\vec{d} = \frac{160\hat{\mathbf{f}} - 5\hat{\mathbf{f}} - 70\hat{\mathbf{k}}}{3}$	5
2.	To prove: $\overline{a} + \overline{b} + \overline{c}$ is equally inclined to $\overline{a}, \overline{b}$ and \overline{c} . Given: $\overline{a}.\overline{b} = \overline{b}.\overline{c} = \overline{a}.\overline{c} = 0$ Angle between: $\overline{a} + \overline{b} + \overline{c}$ and \overline{a} : $\cos \theta_1 = \frac{(\overline{a} + \overline{b} + \overline{c}).\overline{a}}{ \overline{a} + \overline{b} + \overline{c} . \overline{a} }$ $\Rightarrow \cos \theta_1 = \frac{ \overline{a} ^2 + \overline{a}.\overline{b} + \overline{a}.\overline{c}}{ \overline{a} + \overline{b} + \overline{c} . \overline{a} }$ $\Rightarrow \cos \theta_1 = \frac{ \overline{a} ^2 + 0 + 0}{ \overline{a} + \overline{b} + \overline{c} . \overline{a} }$ $= \frac{ \overline{a} }{ \overline{a} + \overline{b} + \overline{c} }$ Angle between $\overline{a} + \overline{b} + \overline{c}$ and \overline{b} $\Rightarrow \cos \theta_2 = \frac{(\overline{a} + \overline{b} + \overline{c}).\overline{b}}{ \overline{a} + \overline{b} + \overline{c} . \overline{b} }$ $= \frac{\overline{a}.\overline{b} + \overline{b} ^2 + \overline{b}.\overline{c}}{ \overline{a} + \overline{b} + \overline{c} . \overline{b} }$ $= \frac{0 + \overline{b} ^2}{ \overline{a} + \overline{b} + \overline{c} . \overline{b} }$	5

		
	$= \frac{ \overline{\mathbf{b}} }{ \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}} }$ Angle between $\overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}$ and $\overline{\mathbf{c}}$:	
	$\Rightarrow \cos \theta_3 = \frac{(a + \overline{b} + c) \cdot c}{ a + \overline{b} + c \cdot c }$	
	$= \frac{\overline{\mathbf{a}}.\overline{\mathbf{c}} + \overline{\mathbf{b}}.\overline{\mathbf{c}} + \overline{\mathbf{c}} ^2}{ \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}} \cdot \overline{\mathbf{c}} }$	
	$= \frac{0 + 0 + c ^2}{ \overline{a} + \overline{b} + \overline{c} \cdot c }$	
	$=\frac{ \mathbf{c} }{ \mathbf{a}+\mathbf{b}+\mathbf{c} }$	
	$ a = \overline{b} = c = p(let)$	
	$\therefore \cos \theta_1 = \cos \theta_2 = \cos \theta_3 = \frac{p}{ \overline{a} + \overline{b} + \overline{c} }$	
	Hence proved.	
2	7 27 27	_
3.	$\vec{A} = 2\vec{a} \cdot 3\vec{b}$	5
	$\vec{B} = 3\vec{a} - 2\vec{b}$	
	The point dividing a line joining points a and b in a ratio m:n internally or externally is	
	given by $\frac{m\vec{b}+n\vec{a}}{m+n}$ and $\frac{m\vec{b}-n\vec{a}}{m-n}$ respectively.	
	\therefore The position vector of the point dividing the line internally in the ratio 2:3 is	
	$2 \times \left(3\vec{a} - 2\vec{b}\right) + 3 \times (2\vec{a} - 3\vec{b})$	
	$=\frac{12}{5}\vec{a}-\frac{13}{5}\vec{b}$	
	$=\frac{15}{5}\vec{a}-\frac{15}{5}b$	
	And the position vector of the point dividing the line internally in the ratio 2:3 is	
	$\frac{2\times(3\vec{a}-2\vec{b})-3\times(2\vec{a}-3\vec{b})}{2}$	
	$=-5\vec{b}$ 2-3	
4.	Diagonals are represented by the vectors $\vec{d}_1 = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$ and $\vec{d}_2 = \hat{\imath} - 3\hat{\jmath} + 4\hat{k}$.	5
	Let \vec{a} and \vec{b} be two adjacent sides of the parallelogram.	
	Thus, $\vec{a} + \vec{b} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$ and $\vec{a} - \vec{b} = \hat{\imath} - 3\hat{\jmath} + 4\hat{k}$	
	Which gives $\vec{a} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$ and $\vec{b} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$	
	The area of the parallelogram	
	$ \vec{a} \times \vec{b} = (a_2b_3-b_2a_3)\hat{i} + (a_3b_1-a_1b_3)\hat{j} + (a_1b_2-a_2b_1)\hat{k}$	
	Here $a_1=2$, $a_2=-1$, $a_3=1$, $b_1=1$, $b_2=2$, $b_3=-3$	
	$11010 \ u_1 - 2, \ u_2 - 1, \ u_3 - 1, \ 0_1 - 1, \ 0_2 - 2, \ 0_3 - 3$	
	$\vec{a} \times \vec{b} = (3-2)\hat{i} + (1+6)\hat{j} + (4+1)\hat{k} = \hat{i} + 7\hat{j} + 5\hat{k}$	
	$\Rightarrow \vec{a} \times \vec{b} = \sqrt{1 + 49 + 25} = \sqrt{75} = 5\sqrt{3}$	
	Hence area = $5\sqrt{3}$ sq. units	
	Tronce area – 5 y 5 sq. amas	

5.	b	5
	d	
	b	
	b	
	a	
6.	С	5
	b	
	c	
	b	
	a	
7.	Using triangle law of addition	5
	$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CA}\overrightarrow{bd} = \frac{1}{2}\overrightarrow{BC}\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$	
	And solving $ \overrightarrow{AD} = \frac{1}{\sqrt{24}}$	
	And solving $ \overrightarrow{AD} = \frac{1}{2}\sqrt{34}$	
8.	$\begin{bmatrix} 1 \\ i + 16i + 12k \end{bmatrix}$	5
	$\frac{1}{3}(-i+16j+13k).$	
9.	As coordinates of A,B,C are: $A(1,2,3)$, $B(3,2,1)$, $C(2,1,2)$, $D(3,4,3)$.	5
	(i) $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (3-1) \hat{i} + (2-2) \hat{j} + (1-3) \hat{k}$	
	$=2\hat{\imath}-2\hat{k}$	
	Similarly find \overrightarrow{CD}	
	\longrightarrow \longrightarrow \longrightarrow	
	(ii) $CD = OD - OC = \hat{i} + 3\hat{j} + k$	
	(a) : $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = (2-3)\hat{i} + (1-2)\hat{j} + (2-1)\hat{k} = -\hat{i} - \hat{j} + \hat{k}$	
	$\Rightarrow \overrightarrow{BC} \qquad -\hat{i} - \hat{i} + \hat{k} \qquad \hat{i} = \hat{i} + \hat{k}$	
	$\therefore \widehat{BC} = \frac{\overrightarrow{BC}}{ \overrightarrow{BC} } = \frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{(-1)^2 + (-1)^2 + 1^2}} = \frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$	
	$=-\frac{1}{\sqrt{3}}\hat{i}-\frac{1}{\sqrt{3}}\hat{j}+\frac{1}{\sqrt{3}}\hat{k}$	
	$\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	
	Which is a unit vector along \overrightarrow{BC} .	
	$) (b) : \overrightarrow{BC} = -\hat{i} - \hat{j} + \hat{k}$	
	$\overrightarrow{BD} = \overrightarrow{OD} - \overrightarrow{OB} = (3-3)\hat{i} + (4-2)\hat{j} + (3-1)\hat{k}$	
	£0.	
	$=2\hat{j}+2\hat{k}$	
	$\therefore \overrightarrow{BC}$ and \overrightarrow{BD} are adjacent sides of $\triangle BCD$.	
	$ \hat{i} + \hat{i} + \hat{k} $	
	$= \overrightarrow{BC} \times \overrightarrow{BD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -1 & 1 \\ 0 & 2 & 2 \end{vmatrix} = \hat{i} (-2 - 2) - \hat{j} (-2 - 0) + k (-2 + 0) = -4\hat{i} + 2\hat{j} - 2\hat{k}$	
	0 2 2	
	1,	
	$\therefore \text{ Area of } \Delta BCD = \frac{1}{2} \overrightarrow{BC} \times \overrightarrow{BD} $	
	$= \frac{1}{2} \sqrt{(-4)^2 + 2^2 + (-2)^2} = \frac{1}{2} \times \sqrt{16 + 4 + 4}$	
	$=\frac{1}{2}\sqrt{24} = \frac{1}{2} \times 2\sqrt{6} = \sqrt{6}$ sq. units	
	2 - 2	

