CLASS-XII CHAPTER-01 RELATION AND FUNCTION 05 MARKS TYPE QUESTIONS

Q. No.	QUESTION	MARK
1.	Two integers a and b are said to be congruence modulo m	5
	if a-b is divisible by m which is as $a \equiv b(m)$.	
	Show that the relation $a\equiv b(5)$ on the set Z of all integers is an equivalence relation. Also	
	find equivalence class [2].	
2.	Consider a function $f: R \to R$ defined by $f(x) = x^2 + 5x - 7$. Check whether f is one-one or onto or both. If not, then what will be the domain and co-domain show that f will be bijective?	5
3.	If A = R-{3} and B = R-{1}. Consider the function f: A \rightarrow B defined by f(x) x-2/ x-3 for all x \in A. Then show that f is bijective.	5
4.	If Z is the set of all integers and R is the relation on Z defined as $R = \{(a, b): a, b \in Z \text{ and } a - b \text{ is divisible by 5}\}$. Prove that R is an equivalence relation	5
5.	If we throw two dices, the total number of possible outcomes is 36. Show how it is an equivalence relation.	5
6.	Let A = R -{3} and B = R - {1}. Consider the function f: A \rightarrow B defined by f (x) = (x-2)/ (x -3). Is f one-one and onto? Justify your answer.	5
7.	Prove that the relation in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a,b): a-b $ is an even $\}$ is an equivalence relation	5
8.	Kendriya Vidyalaya Sangathan conducted cycle race under two different categories- Boys and Girls. There were 32 participants in all. Among all them, finally three from category -1 and two from category-2 were selected for the final race. Amit form two sets B and G with these participants form his college project. Let B={b ₁ , b ₂ b ₃ }, and G=(g ₁ , g ₂ }, where B represents the set of Boys selected and G the set of Girls selected for the final race. (A) How many relation from B to G? (B) Among all the possible relations from B to G, how many functions can be formed from B to G?	5

	A function $f: B \to G$ be defined by $f: B \to G$ defined by $f = \{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}$. Check f is bijective or not?	
9.	Show that the relation R on the set A={ $x \in Z$, $0 \le x \le 12$ }, given by R = {(a,b), a-b is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 i.e. equivalence class [1].	5
10.	A function f:[-4,4] \rightarrow [0,4] is given by f(x) = $\sqrt{16 - x^2}$, show that f is a onto function but not one-one. Find all possible values of "a" for which f(x)= $\sqrt{7}$	5
11.	Let R be the relation in N × N defined by (a,b) R (c,d) . If $a+d=b+c$ for (a,b) , (c,d) in	5
	$N \times N$. Prove that R is an equivalence relation.	
12.	Show that $f: N \to N$ is given by $f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$ is bijective (both one-one and	5
	onto).	

ANSWER

CHAPTER-01

RELATION AND FUNCTION

05 MARKS TYPE QUESTIONS

Q.No	ANSWERS	Mark
1.	Reflexive: For every integer x , $x - x = 0$ is divisible by 5. So $x \equiv x \pmod{5}$. Therefore the relation congruence modulo 5 is reflexive. Symmetric: Let $x \equiv y \pmod{5}$ then $x - y$ is visible by 5. Let $x - y = 5k$, Then $y - x = -5k$ which is also divisible by 5. Hence $y \equiv x \pmod{5}$. Therefore the relation congruence modulo 5 is symmetric Transitive: Assume that $x \equiv y \pmod{5}$ and $y \equiv z \pmod{5}$. $\Rightarrow x - y = 5k$ and $y - z = 5l$. $\Rightarrow x - z = (x - y) + (y - z) = 5(k + l)$ is also divisible by 5. Hence $x \equiv z \pmod{5}$. Therefore the relation congruence modulo 5 is symmetric As congruence modulo 5 is reflexive, symmetric and transitive, so it is an equivalence relation.	5
2.	$f(x) = x^2 + 5x - 7$. Check whether f is one-one or onto or both. If not, then what will be the domain and co-domain show that f will be bijective?	5
	For Injective: let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$	
	$\Rightarrow x_1^2 + 5x_1 - 7 = x_2^2 + 5x_2 - 7$	
	$\Rightarrow x_1^2 - x_2^2 + 5x_1 - 5x_2 = 0$	
	$\Rightarrow (x_1 - x_2)(x_1 - x_2 + 5) = 0$	
	$\Rightarrow (x_1 - x_2) = 0 \text{ or } (x_1 + x_2 + 5) = 0$	
	$\Rightarrow x_1 = x_2 or x_1 = x_2 - 5$	
	There fore f is not one-one. To be one-one $x_1 + x_2 + 5$ should not be zero. It will happen only when $x_1, x_2 \in [0, \infty)$. So to be injective, Domain must be $[0, \infty)$. For Surjective: Let $x^2 + 5x - 7 = y$ $\Rightarrow x^2 + 5x - 7 - y = 0$ $\Rightarrow x = \frac{-5 \pm \sqrt{25 + 4(y + 7)}}{2}$	
	$\Rightarrow x = \frac{-5 \pm \sqrt{25 + 4(y + 7)}}{2}$ To be onto $x = \frac{-5 \pm \sqrt{25 + 4(y + 7)}}{2} \ge 0$ $\Rightarrow \sqrt{25 + 4(y + 7)} \ge 5$	
	$\Rightarrow y \ge -7$ Range = $[-7, \infty) \ne \text{Co-domain}$. So f is not onto. Therefore, f will be surjective if Co-domain=Range= $[-7, \infty)$ So, f will be bijective if domain is $[0, \infty)$ and Co-domain is $[-7, \infty)$.	

3. Given, function is f: $A \rightarrow B$, where $A = R-\{3\}$

and B=R-{1}, such that f(x) = x-2/x-3.

For One-one

Let f(x1) = f(x2), for all $x1, x2 \in A$

 \Rightarrow x2-2/x1-3=x2-2/x2-3

 \Rightarrow (x1 - 2) (x2-3) = (x1-2)(x? - 3)

 \Rightarrow x1x2 - 3x1 -2x2 + 6 = x1x2 - 3x1 - 2x2 +6

 \Rightarrow - 3x12x2 = - 3x1 - 2x2

-3(x1-x2)+2(x1-x2)=0

-(x1 - x2) = 0

Or, x1 - x2 = 0

This implies, x1 = x2.

Since, f(x1) = f(x2)

 \Rightarrow x1 = x2, for all x1, x2 \in A.

So, f(x) is a one-one function.

Onto

To show f(x) is onto, we show that range of f(x) and its codomain are same.

Now,

let. y = x-2/x - 3

or, xy-3y=x-2

 \Rightarrow xy - x = 3y - 2

 \Rightarrow x(y-1) = 3y - 2

 \Rightarrow x=3y-2/y-1Eqn (1)

Since, $x \in R-\{3\}$, for all $y \in R-\{1\}$, the range of $f(x)=R-\{1\}$.

Therefore, Range = Codomain. Hence, $f(x)$ is an onto function. Therefore, $f(x)$ is a bijective function. Therefore, $f(x)$ is a bijective function. Therefore, $f(x)$ is a bijective function. Therefore, $f(x)$ is an onto function. Therefore, $f(x)$ is a bijective function. Therefore, $f(x)$ is an equivalence relation, we have to prove R is reflexive, symmetric and transitive. Reflexive: As for any $x \in Z$, we have $x - x = 0$, which is divisible by S . $\Rightarrow (x - x)$ is divisible by S . $\Rightarrow (x - x)$ is divisible by S . Symmetric: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y)$ is divisible by S . [by definition of R] $\Rightarrow x - y = SA$ for some $A \in Z$. $\Rightarrow y - x = S(-A)$ $\Rightarrow (y - x)$ is also divisible by S . $\Rightarrow (x - y)$ is divisible by S . Transitive: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y)$ is divisible by S . $\Rightarrow x - y = SA$ for some $A \in Z$ Again, let $(y, z) \in R$, where $y, z \in Z$. $\Rightarrow (y - 1)$ is divisible by S . $\Rightarrow y - z = SB$ for some $B \in Z$. Now, $(x - y) + (y - 2) = SA + SB$ $\Rightarrow x - z = S(A + B)$ $\Rightarrow (x - z)$ is divisible by S for some $(A + B) \in Z$ $\Rightarrow (x, z) \in R$ Therefore, R is transitive. Thus, R is reflexive, symmetric and transitive. Hence, it is an equivalence relation		Also, the given codomain of $f(x) = R-\{1\}$	
 Therefore, f(x) is a bijective function. 4. The given relation is R = {(a, b): a, b ∈ Z and a - b is divisible by 5}. To prove R is an equivalence relation, we have to prove R is reflexive, symmetric and transitive. Reflexive: As for any x ∈ Z, we have x - x = 0, which is divisible by 5. > (x - x) is divisible by 5. ⇒ (x, x) ∈ R, V x ∈ Z Therefore, R is reflexive. Symmetric: Let (x, y) ∈ R, where x, y ∈ Z. ⇒ (x - y) is divisible by 5, [by definition of R] > x - y = 5A for some A ∈ Z. ⇒ y - x = 5(-A) ⇒ (y - x) is also divisible by 5. > (y, x) ∈ R Therefore, R is symmetric. Transitive: Let (x, y) ∈ R, where x, y ∈ Z. ⇒ (x - y) is divisible by 5. ⇒ x - y = 5A for some A ∈ Z Again, let (y, z) ∈ R, where y, z ∈ Z. ⇒ (y - 1) is divisible by 5. ⇒ y - z = 5B for some B ∈ Z. Now, (x - y) + (y - 2) = 5A + 5B ⇒ x - z = 5(A + B) ⇒ (x - z) is divisible by 5 for some (A + B) ∈ Z ⇒ (x, z) ∈ R Therefore, R is transitive. 		Therefore, Range = Codomain.	
4. The given relation is R = {(a, b): a, b ∈ Z and a − b is divisible by 5}. To prove R is an equivalence relation, we have to prove R is reflexive, symmetric and transitive. Reflexive: As for any x ∈ Z, we have x − x = 0, which is divisible by 5. ⇒ (x − x) is divisible by 5. ⇒ (x, x) ∈ R, V x ∈ Z Therefore, R is reflexive. Symmetric: Let (x, y) ∈ R, where x, y ∈ Z. ⇒ (x − y) is divisible by 5. [by definition of R] ⇒ x − y = 5A for some A ∈ Z. ⇒ y − x = 5(−A) ⇒ (y − x) is also divisible by 5. ⇒ (y, x) ∈ R Therefore, R is symmetric. Transitive: Let (x, y) ∈ R, where x, y ∈ Z. ⇒ (x − y) is divisible by 5. ⇒ x − y = 5A for some A ∈ Z Again, let (y, z) ∈ R, where y, z ∈ Z. ⇒ (y − 1) is divisible by 5. ⇒ y − z = 5B for some B ∈ Z. Now, (x − y) + (y − 2) = 5A + 5B ⇒ x − z = 5(A + B) ⇒ (x − z) is divisible by 5 for some (A + B) ∈ Z ⇒ (x, z) ∈ R Therefore, R is transitive.		Hence, $f(x)$ is an onto function.	
To prove R is an equivalence relation, we have to prove R is reflexive, symmetric and transitive. Reflexive: As for any $x \in Z$, we have $x - x = 0$, which is divisible by 5. $\Rightarrow (x - x)$ is divisible by 5. $\Rightarrow (x, x) \in R$, $\forall x \in Z$ Therefore, R is reflexive. Symmetric: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y)$ is divisible by 5. [by definition of R] $\Rightarrow x - y = 5A$ for some $A \in Z$. $\Rightarrow (y - x)$ is also divisible by 5. $\Rightarrow (y - x)$ is also divisible by 5. $\Rightarrow (y, x) \in R$ Therefore, R is symmetric. Transitive: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y)$ is divisible by 5. $\Rightarrow x - y = 5A$ for some $A \in Z$ Again, let $(y, z) \in R$, where $y, z \in Z$. $\Rightarrow (y - 1)$ is divisible by 5. $\Rightarrow y - z = 5B$ for some $B \in Z$. Now, $(x - y) + (y - 2) = 5A + 5B$ $\Rightarrow x - z - 5(A + B)$ $\Rightarrow (x - z)$ is divisible by 5 for some $(A + B) \in Z$ $\Rightarrow (x, z) \in R$ Therefore, R is transitive.		Therefore, $f(x)$ is a bijective function.	
To prove R is an equivalence relation, we have to prove R is reflexive, symmetric and transitive. Reflexive: As for any $x \in Z$, we have $x - x = 0$, which is divisible by 5. $\Rightarrow (x - x)$ is divisible by 5. $\Rightarrow (x, x) \in R$, $\forall x \in Z$ Therefore, R is reflexive. Symmetric: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y)$ is divisible by 5. [by definition of R] $\Rightarrow x - y = 5A$ for some $A \in Z$. $\Rightarrow (y - x)$ is also divisible by 5. $\Rightarrow (y - x)$ is also divisible by 5. $\Rightarrow (y, x) \in R$ Therefore, R is symmetric. Transitive: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y)$ is divisible by 5. $\Rightarrow x - y = 5A$ for some $A \in Z$ Again, let $(y, z) \in R$, where $y, z \in Z$. $\Rightarrow (y - 1)$ is divisible by 5. $\Rightarrow y - z = 5B$ for some $B \in Z$. Now, $(x - y) + (y - 2) = 5A + 5B$ $\Rightarrow x - z - 5(A + B)$ $\Rightarrow (x - z)$ is divisible by 5 for some $(A + B) \in Z$ $\Rightarrow (x, z) \in R$ Therefore, R is transitive.			
	4.	To prove R is an equivalence relation, we have to prove R is reflexive, symmetric and transitive. Reflexive: As for any $x \in Z$, we have $x - x = 0$, which is divisible by 5. $\Rightarrow (x - x) \text{ is divisible by 5.}$ $\Rightarrow (x - x) \in R, V x \in Z \text{ Therefore, R is reflexive.}$ Symmetric: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y) \text{ is divisible by 5. [by definition of R]}$ $\Rightarrow x - y = 5A \text{ for some } A \in Z$. $\Rightarrow y - x = 5(-A)$ $\Rightarrow (y - x) \text{ is also divisible by 5.}$ $\Rightarrow (y, x) \in R$ Therefore, R is symmetric. Transitive: Let $(x, y) \in R$, where $x, y \in Z$. $\Rightarrow (x - y) \text{ is divisible by 5.}$ $\Rightarrow x - y = 5A \text{ for some } A \in Z \text{ Again, let } (y, z) \in R \text{, where } y, z \in Z$. $\Rightarrow (y - 1) \text{ is divisible by 5.}$ $\Rightarrow y - z = 5B \text{ for some } B \in Z$. Now, $(x - y) + (y - 2) = 5A + 5B$ $\Rightarrow x - z = 5(A + B)$ $\Rightarrow (x - z) \text{ is divisible by 5 for some } (A + B) \in Z$ $\Rightarrow (x, z) \in R$ Therefore, R is transitive.	5
5. If we note down all the outcomes of throwing two dices, we get the following possible relations:	5.		5

 $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (3,4), \dots \}$ Reflexive: For the relation to be reflexive $(a, a) \in R$ for all $a \in R$ Since, (1,1), (2,2), (3,3), $\in \mathbb{R}$ Hence, the relation is reflexive. Symmetric: For the relation to be symmetric $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in R$ In this relation. $(1,2) \in R$ $=> (2,1) \in \mathbb{R}$ $(2,3) \in R$ $=> (3,2) \in \mathbb{R}$ $(3,4) \in R$ $=> (4,3) \in R$ Hence, it satisfies the condition of symmetric. Hence, the function is symmetric. Transitive: For the relation to be transitive $(a, b) \in R$ and $(b, c) \in R$ for all a, b, $c \in R$ $(a, c) \in R$ In this relation, $(1,2) \in R \& (2,3) \in R$ $=> (1,3) \in \mathbb{R}$ $(2,3) \in \mathbb{R} \& (3,2) \in \mathbb{R} = > (2,2) \in \mathbb{R}$ $(4,5) \in R \& (5,2) \in R \implies (4,2) \in R$ Hence, it satisfies the condition of transitivity. Hence, the relation is transitive. Since, the relation R is reflexive, symmetric as well as transitive, the relation R is equivalence relation. Hence, throwing two dices is an example of equivalence relation. Given function: 6. 5 f(x) = (x-2)/(x-3)Checking for one-one function: f(x1) = (x1-2)/(x1-3)f(x2) = (x2-2)/(x2-3)Putting f(x1) = f(x2)(x1-2)/(x1-3) = (x2-2)/(x2-3)(x1-2)(x2-3) = (x1-3)(x2-2)x1(x2-3)-2(x2-3) = x1(x2-2)-3(x2-2)x1 x2 - 3x1 - 2x2 + 6 = x1 x2 - 2x1 - 3x2 + 6-3x1 - 2x2 = -2x1 - 3x23x2 - 2x2 = -2x1 + 3x1x 1 = x 2Hence, if f(x1) = f(x2), then x1 = x2Thus, the function f is one-one function. Checking for onto function:

			<u> </u>
	f(x) = (x-2)/(x-3)		
	Let $f(x) = y$ such that $y B$ i.e., $y \in R - \{1\}$		
	So, $y = (x - 2)/(x - 3)$		
	y(x-3) = x-2		
	xy - 3y = x - 2		
	xy - x = 3y-2		
	x (y -1) = 3y - 2		
	x = (3y - 2)/(y-1)		
	For $y = 1$, x is not defined but it is given that. $y \in R$ –	- {1}	
	Hence, $x = (3y-2)/(y-1) \in R - \{3\}$ Hence, f is onto.		
7.	The given relation in the set $A=\{1,2,3,4,5\}$ given by		5
	$\mathbf{R} = \{(a,b): a-b \text{ is an even}\}.$		
	Reflexive:- As $ x - x = 0$ is even $\forall x \in A$		
	Hence R is reflexive relation	(1)	
	Symmetric Relation:-		
	Let $(x,y) \in R \Rightarrow x-y $ is even (by definition of	given relation	
	$\Rightarrow y - x $ is also even		
	since $ a = -a \forall a \in A$		
	$\Rightarrow (y,x) \in R \ \forall \ x,y \in A$		
		(11))
	∴ R is symmetric relation.	$(1\frac{1}{2})$	
	Transitive Relation:-		
	Let $(x,y) \in R$ and $(y,z) \in R$		
	$\Rightarrow x - y $ is even (by definition of given relation		
	$\Rightarrow x - y = \pm 2l$ (1 is an integer)(1)		
	$\Rightarrow y-z $ is even (by definition of given relation		
	$\Rightarrow y - z = \pm 2m \text{ (m is an integer)}(2)$		
	Add equation(1) and equation(2)		
	$(x - y) + (y - z) = \pm 2l \pm 2m = \pm 2k$ is an integ	er	
	$\Rightarrow x - z = \pm 2k$		
	$\Rightarrow x - z \text{ is an even integer number .}$	(2)	
		(2)	
	$\Rightarrow (x,z) \in \mathbb{R}$		
	∴ R is transitive relation.		
0			
8.	$\mathbf{B} = \{b_1, b_2 b_3\} \mathbf{G} = \{g_1, g_2\}$		5
	n(B)=3 n(G)=2	(4)	
	since $n(B \times G) = n(B) \times n(G) = 3 \times 2$	(1)	
	(A) Number of relation from B to $G=2^6$	(1)	
	(B) Number of functions from B to $G=2^{n(B\times G)}$		
		$^{(B)} = 2^3 = 8$ (1)	
	(C) $f = \{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}.$		
	Since $f(b_1) = g_1$ and $f(b_3) = g_1$		
	$\Rightarrow f(b_1) = f(b_3) \text{ but } (b_1) \neq (b_3)$		
	As b_1 and b_1 represents two different boys.		
	\Rightarrow f is not one-one.		
	\Rightarrow f is not bijective map.	(2)	
1	· 1 10 110t offootive map.	(2)	

9. Reflexivity: For $a \in A$, we have $ a-a = 0$, which is a multiple of 4 R is reflexive. Symmetric Let $(a,b) \in R$ $ a-b $ is a multiple of 4 $ b-a $ will also multiple of 4 $(b,a) \in R$ R is symmetric. Transitive: Let (a,b) , $(b,c) \in R$ $ a-b $ is a multiple of 4 $ a-b = 4A$, $a-b = \pm 4A$ $ b-c $ is a multiple of 4 $ b-c = 4\mu$, $b-c = \pm 4\mu$ Therefore $a-c = \pm 4 \pm 4\mu$ $(a,c) \in R$ R is transitive. For equivalence class: $ x-1 = 0.4.8.12$ $X = 1.5.9$	5
a-a =0, which is a multiple of 4 R is reflexive. Symmetric Let $(a,b) \in R$ a-b is a multiple of 4 b-a will also multiple of 4 (b,a) $\in R$ R is symmetric. Transitive: Let (a,b) , $(b,c) \in R$ a-b is a multiple of 4 a-b = 4 \$\alpha\$, a-b= ± 4 \$\alpha\$ b-c is a multiple of 4 b-c = 4 \$\mu\$, b-c= ± 4 \$\mu\$ Therefore a-c= ± 4 \$\pm 4\$\mu\$ (a,c) $\in R$ R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
R is reflexive. Symmetric Let $(a,b) \in R$ $ a-b $ is a multiple of 4 $ b-a $ will also multiple of 4 $(b,a) \in R$ R is symmetric. Transitive: Let (a,b) , $(b,c) \in R$ $ a-b $ is a multiple of 4 $ a-b = 4\lambda$, $a-b = \pm 4\lambda$ $ b-c $ is a multiple of 4 $ b-c = 4\mu$, $b-c = \pm 4\mu$ Therefore $a-c = \pm 4 \pm 4\mu$ $(a,c) \in R$ R is transitive. For equivalence class: $ x-1 = 0,4,8,12$ $X=1,5,9$	
Symmetric Let $(a,b) \in R$ $ a-b $ is a multiple of 4 $ b-a $ will also multiple of 4 $(b,a) \in R$ R is symmetric. Transitive: Let (a,b) , $(b,c) \in R$ $ a-b $ is a multiple of 4 $ a-b = 4 $ $(a-b) =$	
Let $(a,b) \in R$ $ a-b $ is a multiple of 4 $ b-a $ will also multiple of 4 $(b,a) \in R$ R is symmetric. Transitive: Let (a,b) , $(b,c) \in R$ $ a-b $ is a multiple of 4 $ a-b $ =4 K , $a-b=\pm 4K$ $ b-c $ is a multiple of 4 $ b-c $ =4 K , $a-b=\pm 4K$ $ b-c $ is a multiple of 4 $ b-c $ =4 K , $a-b=\pm 4K$ $ b-c $ is a multiple of 4 $ b-c $ =4 K R is transitive. For equivalence class: $ x-1 =0,4,8,12$ $ x-1 =0,4,8,12$	
a-b is a multiple of 4 b-a will also multiple of 4 (b,a) $\in R$ R is symmetric. Transitive: Let (a,b), (b,c) $\in R$ a-b is a multiple of 4 a-b = $4K$, a-b= $\pm 4K$ b-c is a multiple of 4 b-c = 4μ , b-c= $\pm 4\mu$ Therefore a-c= $\pm 4 \pm 4\mu$ (a,c) $\in R$ R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
b-a will also multiple of 4 (b,a) $\in R$ R is symmetric. Transitive: Let (a,b), (b,c) $\in R$ a-b is a multiple of 4 a-b = 4Λ , a-b= $\pm 4\Lambda$ b-c is a multiple of 4 b-c = 4μ , b-c= $\pm 4\mu$ Therefore a-c= $\pm 4 \pm 4\mu$ (a,c) $\in R$ R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
(b,a) $\in R$ R is symmetric. Transitive: Let (a,b), (b,c) $\in R$ a-b is a multiple of 4 a-b = 4κ , a-b= $\pm 4\kappa$ b-c is a multiple of 4 b-c = 4μ , b-c= $\pm 4\mu$ Therefore a-c= $\pm 4 \pm 4\mu$ (a,c) $\in R$ R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
R is symmetric. Transitive: Let (a,b) , $(b,c) \in R$ $ a-b $ is a multiple of 4 $ a-b = 4\lambda$, $ a-b = \pm 4\lambda$ $ b-c $ is a multiple of 4 $ b-c = 4\mu$, $ b-c = \pm 4\mu$ Therefore $ a-c = \pm 4\mu$ Therefore $ a-c = \pm 4\mu$ $ a-b = 4\lambda$ $ a-b = \pm 4\lambda$	
Transitive: Let (a,b) , $(b,c) \in R$ $ a-b $ is a multiple of 4 $ a-b = 4\lambda$, $a-b = \pm 4\lambda$ $ b-c $ is a multiple of 4 $ b-c = 4\mu$, $b-c = \pm 4\mu$ Therefore $a-c = \pm 4 \pm 4\mu$ $(a,c) \in R$ R is transitive. For equivalence class: $ x-1 = 0,4,8,12$ $X=1,5,9$	
Let (a,b) , $(b,c) \in R$ a-b is a multiple of 4 $ a-b = 4\kappa$, $a-b = \pm 4\kappa$ b-c is a multiple of 4 $ b-c = 4\mu$, $b-c = \pm 4\mu$ Therefore $a-c = \pm 4 \pm 4\mu$ $(a,c) \in R$ R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
a-b is a multiple of 4 a-b = 4κ , a-b= $\pm 4\kappa$ b-c is a multiple of 4 b-c = 4μ , b-c= $\pm 4\mu$ Therefore a-c= $\pm 4 \pm 4\mu$ (a,c) $\in R$ R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
$ a-b = 4K , a-b = \pm 4K$ $ b-c \text{ is a multiple of 4}$ $ b-c = 4\mu , b-c = \pm 4\mu$ $Therefore a-c = \pm 4 \pm 4\mu$ $(a,c) \in R$ $R \text{ is transitive.}$ $For equivalence class:$ $ x-1 = 0,4,8,12$ $X=1,5,9$	
b-c is a multiple of 4 b-c =4 μ , b-c= $\pm 4\mu$ Therefore a-c= $\pm 4 \pm 4\mu$ (a,c) $\in R$ R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
b-c =4 μ , b-c= $\pm 4\mu$ Therefore a-c= $\pm 4 \pm 4\mu$ (a,c) $\in R$ R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
Therefore a-c= $\pm 4 \pm 4\mu$ $(a,c) \in R$ R is transitive. For equivalence class: x-1 =0,4,8,12 X=1,5,9	
$(a,c) \in R$ R is transitive. For equivalence class: $ x-1 =0,4,8,12$ $X=1,5,9$	
R is transitive. For equivalence class: x-1 = 0,4,8,12 X=1,5,9	1
For equivalence class: x-1 = 0,4,8,12 X=1,5,9	
x-1 = 0,4,8,12 X=1,5,9	
X=1,5,9	
10. $y = \sqrt{16 - x^2}$	
10. $y = \sqrt{16 - x^2}$	
	5
$y^2 = 16 - x^2$	
$x = \sqrt{16 - y^2}$	
clearly for x to be $x \in [-4,4]$	
$16 - y^2 \ge 0$	
$(y-4)(y+4) \le 0$	
$0 \le y \le 4$	
Therefore it is onto	
When x=4, y=0	
When x=-4, y=0	
So it is not one one	
Also—	
$F(a) = \sqrt{7}$	
$\sqrt{16-a^2} = \sqrt{7}$	
$16 - a^2 = 7$	
a∈ [−3,3]	
11. For Reflexive	1
$(a, b) R (a, b) \Rightarrow a + b = b + a$ which is true since addition is commutative on N.	
\Rightarrow R is reflexive.	
For Symmetric	
Let $(a, b) R (c, d) \Rightarrow a + d = b + c$	
\Rightarrow b + c = a + d	
\Rightarrow c + b = d + a	2
\Rightarrow (c, d) R (a, b)	2

ı		
	⇒ R is symmetric.	
	For Transitive for (a, b) , (c, d) , (e, f) in $N \times N$	
	Let $(a, b) R (c, d)$ and $(c, d) R (e, f)$	2
	\Rightarrow a + d = b + c and c + f = d + e	
	$\Rightarrow (a+d) - (d+e) = (b+c) - (c+f)$	
	$\Rightarrow a - e = b - f \Rightarrow a + f = b + e$ \Rightarrow (a, b) R (e, f)	
	\Rightarrow R is transitive.	
	Hence, R is an equivalence relation.	
12.	One-One : Suppose $f(x_1) = f(x_2)$.	
	Case 1: When x_1 is odd and x_2 is even.	
	In this case $f(x_1) = f(x_2) \Rightarrow x_1 + 1 = x_2 - 1 \Rightarrow x_2 - x_1 = 2$	1
	This is a contradiction, since the difference between an even natural number and an odd	
	natural number can never be 2.	
	Thus in this case $f(x_1) \neq f(x_2)$.	
	Similarly, When x_1 is even and x_2 is odd, then $f(x_1) \neq f(x_2)$.	
	Case 2: When x_1 and x_2 are both odd.	
	In this case $f(x_1) = f(x_2) \Rightarrow x_1 + 1 = x_2 + 1 \Rightarrow x_1 = x_2$	1
	∴ f is one-one.	
	Case 3: When x_1 and x_2 are both even.	
	In this case $f(x_1) = f(x_2) \Rightarrow x_1 - 1 = x_2 - 1 \Rightarrow x_1 = x_2$	1
	∴ f is one-one.	
	Onto : Let $y \in N$ (codomain).	
	Case 1: When y is odd then $y + 1$ is even.	
	f(y+1) = (y+1) - 1 = y	1
	Case 2: When y is even then $y - 1$ is odd.	
	f(y-1) = (y-1) + 1 = y.	1
	Thus each $y \in N$ (codomain) has its pre-image in dom (f) .	
	$\therefore f$ is onto.	
	Hence f is both one-one and onto (bijective).	