Answer Key Practice Paper 1 -IX Mathematics Mind Curves -Mid Term

Section: A

(Multiple Choice Questions- 1 Mark each)

1.	(c)	(a + b - 1)(a - b)
2.	(c)	$\sqrt{7}$
3.	(d)	5
4.	(b)	4
5.	(c)	55°
6.	(a)	1320 sq.m
7.	(d)	27
8.	(b)	ASA
9.	(a)	5√6
10.	(b)	48°, 60°, 120°, 132°
11.	(a)	Remains the same
12.	(b)	900√3 cm2
13.	(c)	Third quadrant
14.	(c)	60°
15.	(c)	(0,1)
16.	(c)	145°
17.	(a)	equal
18.	(d)	(0, -5)
19.	(b)	both Assertion and reason are correct but reason is not correct explanation for Assertion
20.	(a)	both Assertion and reason are correct and reason is correct explanation for Assertion

SECTION: B

(VSA Questions of 2 marks each)

21. Formula used:

 $(a+b)^2 = a^2 + 2ab + b^2$

Calculations:

Squaring the given equation,

 $\Rightarrow (3x)^2 + 2 \times (3x) \times (2y) + (2y)^2 = (12)^2$

 $\Rightarrow 9x^2 + 4y^2 + 12xy = 144$

Substituting the value of
$$xy$$
,
 $\Rightarrow 9x^2 + 4y^2 + 12 \times 6 = 144$
 $\Rightarrow 9x^2 + 4y^2 + 72 = 144$
 $\therefore 9x^2 + 4y^2 = 72$
22. In the figure, AB and CD intersect each other at O
 $\angle AOC + \angle BOE = 70^\circ$ and $\angle BOD = 40^\circ$
Now, AB is a line
 $\therefore \angle AOC + \angle BOE + \angle COE = 180^\circ$
(Angles on a line are supplementary)
 $\Rightarrow 70^\circ + \angle COE = 180^\circ$
 $\Rightarrow \angle COE = 180^\circ - 70^\circ = 110^\circ$
Also, $\angle AOC = \angle BOD$ (Vertically opposite angles)
 $\Rightarrow \angle AOC = 40^\circ$
 $\therefore \angle BOE = 70^\circ - 40^\circ = 30^\circ$
Hence, relfex $\angle COE = 360^\circ - \angle COE$
 $= 360^\circ - 110^\circ = 250^\circ$
OR
 $\angle POY = 90^\circ$
 $\angle POX + QPOY = 180^\circ$
 $\Rightarrow \angle POX = 90^\circ$
 $a: b = 2:3$
Let $a = 2x^\circ$
and $b = 3x^\circ$
 $\angle POX = a + b = 5x$
 $90^\circ = 5x$
 $\Rightarrow x = 18^\circ$
 $\angle MOX = b = 3x = 54^\circ$
 $\angle MOX + \angle NOX = 180^\circ$ (Linear pair)
 $b + c = 180^\circ$

		$54^{\circ} + c = 180^{\circ}$
		$c = 180^{\circ} - 54^{\circ} = 126^{\circ}$
23.		Let the polynomials $p(x) = 5x - 4x^2 + 3$
	(i)	$p(0) = 5(0) - 4(0)^2 + 3$
		= 0 - 0 + 3
		= 3
	(ii)	$p(-1) = 5(-1) - 4(-1)^2 + 3$
		= -5 - 4 + 3
		= -6
24.		A((-3,0); B(5,-3); C(5,0); D(0,0)
25.		As given $AC = BCeq(1)$
		From equation (1)
		AC = BC
	2	Adding AC on both sides,
		AC + AC = BC + AC
		2AC = AB(:: BC + AC = AB)
		$\therefore AC = \frac{1}{2}AB$
		SECTION: C
		(VSA Questions of 3 marks each)
26.	NE	So, By Factoring $25x^2 - 35x + 12$, the Length and Breadth can be obtained.
		$\to 25x^2 - 35x + 12 = 0$
		$\rightarrow 25x^2 - 15x - 20x + 12 = 0$
		$\to 5x(5x-3) - 4(5x-3) = 0$
		$\rightarrow (5x-3)(5x-4) = 0$
		So, the Length and Breadth are $(5x - 3)(5x - 4)$.

Perimeter = 2(Length + Breadth)

 $\rightarrow \text{Perimeter} = 2(5x - 3 + 5x - 4)$

$$\rightarrow \text{Perimeter} = 2(10\text{x} - 7)$$

 $(5+\sqrt{3})/(7-4\sqrt{3}) = a + \sqrt{3b}$ 27.

 $(5+\sqrt{3})(7+4\sqrt{3})/(7-4\sqrt{3})(7+4\sqrt{3}) = a + \sqrt{3b}$ [Rationalizing the denominator] $(35 + 20\sqrt{3} + 7\sqrt{3} + 12)/(49 - 48) = a + \sqrt{3b}$ $(47 + 27\sqrt{3})/1 = a + \sqrt{3b}$ $47 + 27\sqrt{3} = a + \sqrt{3b}$ By comparing LHS and RHS, a = 47, b = 27OR $x = 2 + \sqrt{3}$ $\frac{1}{x} = \frac{1}{2+\sqrt{3}} = \frac{1(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}$ (Rationalising the denominator) $=\frac{2-\sqrt{3}}{(2)^2-(\sqrt{3})^2}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$ $\therefore x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$ Cubing both sides, $\left(x+\frac{1}{x}\right)^3 = (4)^3$ $\Rightarrow x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) = 64$ $\Rightarrow x^3 + \frac{1}{x^3} + 3x4 = 64$ $\Rightarrow x^3 + \frac{1}{r^3} + 12 = 64$ $\Rightarrow x^3 + \frac{1}{x^3} = 64 - 12 = 52$ Hence $x^3 + \frac{1}{x^3} = 52$ a = 4b and $2c = b + 75^{\circ}$ (vert. opp $\angle s$) Also $a + 2c = 180^{\circ}$ (*Q* is a straight line) $\Rightarrow 4b + b + 75^{\circ} = 180^{\circ}$ $\Rightarrow 5b = 105^{\circ} \Rightarrow b = 21^{\circ}$ $\therefore a = 4 \times 21^\circ = 84^\circ$ and $\Rightarrow c = \frac{(21^{\circ} + 75^{\circ})}{2} = \frac{96^{\circ}}{2} = 48^{\circ}$ Hence, option A is correct.

28.

(i) In \triangle *ABD* and \triangle *BAC*, 29.

AD = BC (Given)

 $\angle DAB = \angle CBA$ (Given)

AB = BA (Common)

 $\therefore \triangle ABD \cong \triangle BAC$ (By SAS congruence rule)

(ii) Since $\triangle ABD \cong \triangle BAC$,

 \therefore BD = AC(ByCPCT)

(iii) Since
$$\triangle ABD \cong \triangle BAC$$
,

 $\angle ABD = \angle BAC(ByCPCT)$

30.

31.

From the question, we have

$$(x + y + z)^{2} = x^{2} + y^{2} + z^{2} + 2(xy + yz + zx)$$

$$(15)^2 = 83 + 2(xy + yz + zx)$$

2(xy + yz + zx) = 225 - 83

2(xy + yz + zx) = 142

$$(xy + yz + zx) = 71$$
Again,

Again,

$$\therefore x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)[(x^{2} + y^{2} + z^{2}) - (xy + yz + zx)]$$
$$= (15) \times [83 - 71]$$

STI

 $= 15 \times 12$

= 180

Hence, the value of $x^3 + y^3 + z^3 - 3xyz$ is 180.

From the question, we have

$$(x + y + z)^{2} = x^{2} + y^{2} + z^{2} + 2(xy + yz + zx)$$

$$(15)^{2} = 83 + 2(xy + yz + zx)$$

$$2(xy + yz + zx) = 225 - 83$$

$$2(xy + yz + zx) = 142$$

$$(xy + yz + zx) = 71$$
Again,

$$\therefore x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)[(x^{2} + y^{2} + z^{2}) - (xy + yz + zx)]$$

$$= (15) \times [83 - 71]$$

 $= 15 \times 12$

= 180

Hence, the value of $x^3 + y^3 + z^3 - 3xyz$ is 180.

SECTION D

(Long answer type questions of 4 marks each)

Let *ABCD* be a rhombus-shaped field. 32.

For $\triangle BCD$,

Semi-perimeter, $s = \frac{(48+30+30)}{2} = 54 \text{ m}$

By Heron's formula,

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

Therefore the area of

$$\triangle BCD = \left[\sqrt{54(54 - 48)(54 - 30)(54 - 30)}\right] \text{m}^2$$

 $=\sqrt{54(6)(24)(24)}=432 \text{ m}^2$

Area of field = $2 \times \text{Area of } \triangle BCD$

 $= (2 \times 432)m^2 = 864 m^2$

L.H.S

Area of grazing for $1 \text{cow} = \frac{864}{18} = 48 \text{ m}^2$

Each cow will get 48 m² area of grass field.

33.

O.N

$$= \frac{1}{1 + \frac{x^{a}}{x^{b}}} + \frac{1}{1 + \frac{x^{b}}{x^{a}}}$$

$$= \frac{x^{b}}{x^{b} + x^{a}} + \frac{x^{a}}{x^{a} + x^{b}}$$

$$= \frac{x^{b} + x^{a}}{x^{a} + x^{b}}$$

$$= 1$$

$$= \text{R.H. S.$$
33. (i) In \triangle ABD and \triangle ACD,
AD = AD (Common)
AB = AC (given)
BD = CD (given)
Therefore, \triangle ABD $\cong \triangle$ ACD (by SSS congruence rule)

 $\angle BAD = \angle CAD(CPCT)$ $\angle BAP = \angle CAP$ (ii) In \triangle ABP& \triangle ACP, AP = AP(Common) $\angle BAP = \angle CAP$ (Proved above) AB = AC (given) Therefore, $\triangle ABP \cong \triangle ACP$ (by SAS congruence rule). (iii) $\angle BAD = \angle CAD$ (proved in part i) Hence, AP bisects $\angle A$. also, In \triangle BPD and \triangle CPD, PD = PD(Common)BD = CD (given) $BP = CP(\triangle ABP \cong \triangle ACP \text{ so by CPCT}.$ Therefore, \triangle BPD $\cong \triangle$ CPD (by SSS congruence rule.) Thus, $\angle BDP = \angle CDP$ (by CPCT.) Hence, we can say that AP bisects $\angle A$ as well as $\angle D$. AL INSTI (iv) $\angle BPD = \angle CPD$ (by CPCT as \triangle BPD $\cong \triangle$ CPD) &BP = CP(CPCT)also, $\angle BPD + \angle CPD = 180^{\circ}$ (BC is a straight line.) $\Rightarrow 2 \angle BPD = 180^{\circ}$ $\Rightarrow \angle BPD = 90^{\circ}$ Hence,

