

BGS INTERNATIONAL PUBLIC SCHOOL

SECTOR-5, DWARKA, NEW DELHI -75 PREBOARD - I (2023-24)

SUB: APPLIED MATHEMATICS (241) SCHOOLCODE: 25279

CLASS: XII TIME: 3 Hours

SET: 1 M.M:80

General instructions:

- This question paper contains 5 sections A, B, C, D and E. Each section is compulsory.
- (ii) Section -A carries 20 marks weightage, Section -B carries 10 marks weightage, Section- C carries 18 marks weightage, section- D carries 20marks weightage and section- E carries 3 case based with total weightage of 12 marks.
- (iii) Section A: It comprises of 18 MCQ's of 1 mark each and 2 Assertion- Reasoning Based questions

(1v) Section B : It c	omprises of 5 VSA type of	questions of 2 mark	s each,	
(v) Section C: It co	omprises of 6 SA type of q	uestions of 3 marks	each.	
(vi) Section D: It co	omprises of 4 LA type of	questions of 5 mark	s each.	
(vii) Section E: It has	as 3 CASE STUDY BASE	ED QUESTION of 4	marks each.	
	9	SECTION - A		
U			ce is provided in this section)	
Q1. $[(3\times7) + 5] \mod 4$ is	4	. ,		
(a) 3	(b) 2	(c) 4	(d) 5	
(-, -	(-)	OR	(-,-	
	ooat 5 km an hour in still w hich the stream is flowing.		ice as long to row upstream as to	row downstream.
(a) 1.5 km/hr	(b) 2.5 km/hr	(c) 2km/hr	(d) 3 km/hr	
₹ 80 per kg? (a) 11:20 Q3. pipes A and B togeth	(b) 11: 10	(c) 20:11 rs, pipe B take 6 hour	per kg so that the mixture be we (d) 10:11 s more than A to fill the tank, if t (d) 8 hours	
Q4. The feasible region (a) Only I and II	of the inequality x +y ≤ 1 a (b) Only I and III	nd x − y ≤ 1 lies in qu (c) Only II aı		
		OR		
· ·	(3, 3), B (20, 3), C (20, 10) (b) 80 eater than B,	co-ordinates of the c	orner point Of the bounded). The Maximum value of Z is (d)70	
A % B, means A is equ A @ B, means A is gre A © B, means A is sm	ual to B eater than equal to B,	u.c. e. n	anducion III D * D	

Statement: S © P @ Q # R Conclusion I: S @ R Conclusion II: R * F

- (a) Only conclusion I is true
- (b) Only conclusion II is true
- (c) Both conclusion I and II are true
- (d) Neither conclusion I nor II is true
- (e) Either conclusion I or II is true

Q6.	If matrix A	$=\begin{bmatrix} 3 & -1 \\ -3 & 3 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ and A	$\Lambda^2 = \propto A$	then write t	he value o	of ∝						
	(a) 9		(b) 6) 18		(d)	12				
Q7.	A is a skew (a) symme (c) Diagon	tric matri		x and a n	natrix <i>B</i> suc	(b) ske	AB is defir ew-symm er triang	etric ma	trix	is a:			
Q8.	If A = $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ (a) $\begin{bmatrix} 2 \\ -5 \end{bmatrix}$	$\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ write $\begin{bmatrix} -3 \\ -2 \end{bmatrix}$	A ⁻¹ in te	rms of A $\left(\frac{1}{19}\right)^{\frac{1}{19}} \begin{bmatrix} 2 \\ 5 \end{bmatrix}$	3 -2]	(c) $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$	3 -2]	(d)	$\frac{1}{19} \begin{bmatrix} 2 \\ 5 \end{bmatrix}$	-3 ₋₂]			
Q9.					ons f(x) = x2					∪[2 ,∞)			
Q10			scribed b	-	-		where x _s	is quanti	-	lied. What		is the price of tuilibrium price	he
Q11	1. $\int_{-2}^{2} x^5 dx$ (a) $2 \int_{-2}^{2} x^5 dx$		(b) $\frac{32}{5}$	<u>!</u>	(c) $\frac{64}{5}$			(d) 0					
Q12	_	fferential e	equation		l of the		ial equat				ariable in	volved in the	
Q13	3. In a Poiss value is gi (a) m = np	ven by?	ution, if (b) m		number of					success, the	n the me	an	
Q14	1. The shape (a) Bell Sha			ırve is b) Flat	OR	(c)	Circular		(d)	Spiked			
	Vhich one is (a) There a (c) There is	re 2 outco	mes for	each tria	nomial distr	ribution.		•	-	uccess mus be depende		e for all trails ch other	
Q15	5. Given bel	ow are th	e consur 2014	ner price 2016	e index num	bers (CPI)	of the in	ndustrial	worker	·S.			
				150 ne by the y = 180+	190 e method of 50x	f least squ (c) y = 10			(d)	None of th	ese		
	Increase in (a) Secular		-		OR the hospita variation		neat strok asonal va		((d) cyclical v	rariation		
Q16	5. $\int \left(\frac{1}{x} - \frac{1}{2x}\right)$ (a) $\frac{e^{2x}}{2} + 0$	$\left(\frac{1}{x^2}\right) e^{2x} dx$	is equal	s to					244				
	(a) $\frac{e^{2x}}{2} + e^{2x}$	С	(b) $\frac{e^2}{2x}$	x + C		(c) $\frac{e^x}{2}$ + c		($d) \frac{e^{2x}}{2x} +$	+ C			
		al to the co		4y passi (– y = 3	OR ing through		+ y = 1		(d)	x – y = 1			
Q17	7. At 6% cor (a) Rs 30		-	find the ₁ 35,500	present valu	ie of a per (c) Rs 4	-	of Rs 600	-	e at the beg s 45,000	inning of	each quarter.	

CAGR stands for

- (a) Compound Aggregate Growth Rate
- (c) Computed Annual Growth Rate

- (b) Compound Annual Growth Rate
- (d) Computed Aggregate Growth Rate
- Q18. It is given that at x = 1, the function $f(x) = x^3 12x^2 + kx + 7$ attains maximum value, then the value of 'k'

 (a) 10 (b) 12 (c) 21 (d) 13

Assertion Reasoning Based Questions

Q19. Assertion: For two matrices A and B of order 3, |A| = 3, |B| = -4 then |2AB| = -96

Reason: For a matrix A of order n and a scalar kdet(kA)=k raised to the power n. (det A)

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- Q20. **Assertion (A):** An annuity in which the periodic payment begins on a fixed date and continue forever is called perpetuity.

Reason (R): The amount or future value of perpetuity is defined.

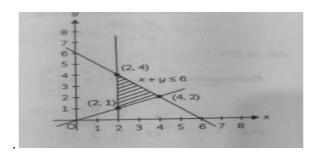
- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

SECTION - B

(All questions are compulsory. In case of internal choice, attempt any one question only)

Q21 The marginal cost of production of x units of a commodity is 30+2x. It is known that fixed costs are Rs.120. Find the total cost of producing 100units.

OR


If the demand function for a commodity is $p = 25 - x^2$, find the consumers' surplus for $p_0 = 9$.

- Q22. Verify that y + x + 1 = 0 is a solution of differential equation $(y x) dy (y^2 x^2) dx = 0$.
- Q23. How much money is needed to endure a series of lectures costing 2500 at the beginning of each year indefinitely, if money is worth 3% compounded annually?
- Q24. Experience shows that 1.4 % of telephone calls received are wrong numbers. Determine the probability that among 150 calls received 2 are wrong numbers.

OR

For a certain type of laptops the charging time of batteries is normally distributed with mean 50 hours and standard deviation 15 hours. Arun has one of these laptops, Find the probability that the charging time of battery will be between 50 to 70 hours.

Q25. One very useful application of linear programming is its a graphical method for solving problems in two variable. Mrs. Meena wanted to use this concept to help students figure out how the area of the 3D-model is composed of 3 straight lines. On the below diagram (cross section of 3D model), O is the origin. The shaded region R is defined by three inequalities one of the three inequalities is $x + y \le 6$.

- (i) Given that the point (x, y) is in the region R, then what is the maximum value of x+ 2y?
- (ii) Does the point (3, 2.5) lies inside the region R?

SECTION - C

(All questions are compulsory. In case of internal choice, attempt any one question only)

- Q 26. A firm has the cost function $C = \frac{x^3}{3} 7x^2 + 111x + 50$ and demand function x = 100 p
 - (i) Write the total revenue function in terms of x
 - (ii) Formulate the total profit function P in terms of x
 - (iii) Find the profit maximizing level of output x. What is the maximum profit?

OR

The marginal revenue function for a firm is given by $\frac{5x^2+30x+51}{(x+3)^2}$. Show that the revenue function is given by $\frac{2x}{x+3} + 5x$

- Q27. Find the Probability distribution of the number of Successes of two tosses of a die. Where a Success is defined as "the number greater than 4". Also find the Mean. Variance and Standard deviation of the distribution.
- Q 28. Find the effective rate of interest equivalent to a nominal rate of 6% compounded
 - (i) Semi-annually (ii) Quarterly (iii) Continuously

Q29. Show that
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$

Show that the matrix B^TAB is symmetric or skew symmetric accordingly when A is symmetric or skew symmetric

Q30. If A =
$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix}$$
, then show that A³ – 4A² – 3A + 11A = 0

Q31. A steamer can go 24 km in still water in 50 minutes. One day, it went 22.5 km upstream and returned the same distance in downstream. If the difference between the time taken to travel upstream and downstream was 25 minutes, then what was the speed of stream in km per hour?

SECTION - D

(All questions are compulsory. In case of internal choice, attempt any one question only)

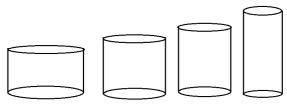
- Q32. A random sample of size 16 has 53 as mean. The sum of squares of deviations from mean is 150. Can this sample be regard as taken from the population having 56 as mean? Level of significance is 5% (right tail t-test).
- Q 33 Consider the following data:

Υ	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
е												
а												
r												
P	137	140	34	137	151	121	124	159	157	169	172	150
r												
0												
d												
u												
С												
ti												
0												
n												

Calculate a suitable moving average and show on a graph against the original data.

- Q34. Suppose Mr. X invested Rs.1,00,000/- in a mutual fund and the value of the investment at the time of redemption was Rs.1,50,000/-. If CAGR for the investment is 8%, calculate the number of years for which he has invested the amount. If CAGR is 4 % what is the number of years of investment?
- Q35. (Transportation problem) There are two factories located one at place P and the other at place Q. From these locations, a certain commodity is to be delivered to each of the three depots situated at A, B and C. The weekly

requirements of the depots are respectively 5, 5 and 4 units of the commodity while the production capacity of the factories at P and Q are respectively 8 and 6 units. The cost of transportation per unit is given below:


From/TO	COST (IN Rs)							
	A	В	C					
	160	100	150					
	100	120	100					

SECTION - E

(All questions are compulsory. In case of internal choice, attempt any one question only)

Case Study - I

Q36. A company is planning to launch a new product and decides to pack the new product in closed right circular cylindrical cans of volume 432π cm³. The cans are to be made from tin sheet. The company tried different options.

Based on the above information, answer the following questions:

- (a) If r cm is the radius of the base of the cylinder and h cm is height, then find a relation between r and h.
- (b) If S cm² is the surface area of the closed cylindrical can, then find S in terms of r.
- (c) Find the minimum surface area of cylindrical can

Q37. Case study - II

A factory produces bulbs, of which 6% are defective bulbs in a large bulk of bulbs.

Based on the above information, answer the following questions

- (i) Find the probability that in a sample of 100 bulbs selected at random none of the bulbs are defective (Use e-6=0.0024)
- (ii) Find the probability that the sample of 100 bulbs has exactly two defective bulbs.
- (iii) Find the probability that the sample of 100 bulbs will include not more than one defective bulb.

OR

Find the Mean and Variance of the distribution of number of defective bulbs in a sample of 100 bulbs.

Q38. Case-Study 3

In mathematics modular arithmetic is a system of arithmetic for integers where numbers "wrap around" when reaching a certain value called modulus. A familiar use of modular arithmetic is in the 12 hour clock in which the day is divided into two 12 hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in 7+8=15, but clocks "wrap around" every 12 hours. Because the hour number starts over after it reaches 12, this is arithmetic modulo 12. In terms of the definition,15 is congruent to 3 modulo 12. So 15:00 on a 24 hour clock is displayed 3:00 on a 12 hour clock. Based on the above information answer the following questions

- (a) Evaluate 3⁶ (mod4)
- (b) What is the least positive of x for which $100 \equiv x \pmod{7}$
- (c) Evaluate (137+995) mod 12