Pre Board Examination Class: XII Applied Mathematics Subject Code - 241

Time Allowed: 3 hr

Maximum Marks: 80

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory.
- Section A carries 20 marks weightage, Section B carries 10 marks weightage, Section - C carries 18 marks weightage, Section - D carries 20 marks weightage and Section - E carries 3 case-based with totalweightage of 12 marks. Section - A:
- 3. It comprises of 20 MCQs of 1 mark each. Section B:
- 4. It comprises of 5 VSA type questions of 2 marks each. Section – C:
- It comprises of 6 SA type of questions of 3 marks each. Section – D:
- It comprises of 4 LA type of questions of 5 marks each.
 <u>Section E:</u>
- It has 3 case studies. Each case study comprises of 3 case-based questions, where 2 VSA type questions are of 1 mark each and 1 SA type question is of 2 marks. Internal choice is provided in 2 marks questionin each case-study.

Internal choice is provided in 2 questions in Section - B, 2 questions in Section – C, 2 questions in Section - D. You have to attempt only one of the alternatives in all such questions.

	<u>SECTION – A</u> (All questions are compulsory. No internal choice is provided in this section)						
1.	If $a \equiv b \pmod{n}$ and q is some integer, then (a) $b = a + nq$ (b) $b = a - nq$ (c) $b = nq$ (d) $b = a \cdot nq$						
2.	If $0 < x < 1$, which of the following is greatest (a) x (b) x^2 (c) $\frac{1}{x}$ (d) $\frac{1}{x^2}$						
	$ \begin{array}{c} (a) \ x \\ (b) \ x \\ (b) \ x \\ (c) \ x \\ (c) \ x^2 \end{array} $						
3.	A simple random sample consists of four observations 1,3,5,7. What is the point estimate of population standard deviation?						
	(a) 2.3 (b) 2.52 (c) 0.36 (d) 0.4						
4.	For the purpose of t-test of significance, a random sample of size (n) 45 is drawn from a normal population, then the degree of freedom (v) is -						
	(a) 44 (b) 45 (c) $\frac{1}{45}$ (d) 46						
5.	Speed of river is 6km/hr. Speed of boat in still water is 30km/hr. Distance travelled by the boat in 24						

	minutes downstream is
	(a) 9.8 km (b) 12 km (c) 12.8 km (d) 14.4 km
6.	If we reject the null hypothesis, we might be making
	(a) Type-I error (b) Type-II error (c) A correct decision (d) A wrong decision
7.	Two water supplying trucks – A and B supply water to remote areas. Truck A is carrying 120 litres of water to a village 2 km away and truck B is delivering 85 litres of water to another village, 1 km away. Due to bad road conditions, each truck loses 15 ml water while travelling each metre distance. Which truck is able to deliver more water and by how much more?
	(a) Truck A, 10 litres (b) Truck B, 10 litres (c) Truck A, 20 litres (d) Truck B, 20 litres
8.	The face value of a sinking fund that yields a dividend of ₹1000 at 5% quarterly is(a) 80000(b) 20000(c) 40000(d) 8000
9.	(a) 80000 (b) 20000 (c) 40000 (d) 8000 In the given figure, the area bounded by the curve $y = f(x)$, x -axis and $x = a$ and $x = b$ is equal to – $y = \frac{a}{y + f(x)}$
	(a) $\int_{a}^{b} f(x) dx$ (b) $\int_{a}^{b} f(y) dy$ (c) $\int_{a}^{b} f(x) dx$ (d) $\int_{a}^{b} f(y) dy$ A factory production is delayed for 20 days due to fire. Under which trend oscillation does this
10.	A factory production is delayed for 20 days due to fire. Under which trend oscillation does this situation fall ?
	(a) Seasonal (b) Irregular (c) Secular (d) Cyclical
11.	A paper bag making machine costs \gtrless 3,00,000 and estimated scrap value of \gtrless 20,000 at the end of its useful life of 4 years. What is its annual depreciation as per linear method?
	(a) 70000 (b) 7000 (c) 80000 (d) 8000
12.	The corner points of the shaded unbounded feasible region of an LPP are $(0, 4)$, $(0.6, 1.6)$ and $(3, 0)$ as shown in the figure. The minimum value of the objective function $Z = 4x + 6y$ occurs at

			111111		
	6 У				
	k				
	A = (0, 4)				
	3				
	T.				
	B = (0.6, 16				
			×		
	-3 -2 -1 0	2 C = (3, 0)	5 6		
	-1	1			
		,			
	(a)(0.6, 1.6) or (b) (3, 0) only	ly			
	(c) $(0.6, 1.6)$ ar	nd (3, 0) only			
	(d) at every point	int of the line-seg	ment joining the point	ts (0.6, 1.6) and (3, 0)	
13.	The sum of order and	degree of the diffe	erential equation $\frac{d^2y}{d^2}$	$-\left(\frac{dy}{dx}\right)^3 + 7y = 0$ is	
	(a) 2	(b) 3	dx^2 (c) 4	(dx) (d) 5	
14.	Assume that the year -	end revenues of a	business over a three	e period, are mentioned in the	
	following table:				
	Year End	31-12-2018		31-12-2021	
	Year End Revenue	9000		13000	
	Calculate the CAGR o	f revenues over th	ree years period span	ning the "end" of 2018 to the	"end" of
	2021 Given that $\binom{13}{1}$	$\frac{1}{2} = 1.13$			
	2021. Given that $\left(\frac{13}{9}\right)^2$	3 – 1.13			
	(a) 11.3%	(b) 14%	(c) 13%	(d) 15%	
15.	A dishonest milkman i	professes to sell hi	is milk at cost price b	ut he mixes it with water and t	hereby
	gains 25%. The percer	-	-		
		-		(d) 250/	
	(a) 4%	(b) 6%	(c) 20%	(d) 25%	
16.	An Observed set of the	e population that h	as been selected for a	analysis is called a	
	(a) process	(b) sample	(c) forecast	(d) parameter	
		-		-	
1	1				

17.	7. For predicting the straight-line trend in the sales of cars (in thousands) on the basis of 5consec							consecutive		
years data, the company makes use of 3-year moving averages me							e sales of c	ars for		
	respective ye	espective years are p, q, r, s and t respectively, then which of the following average will not be								
	computed?									
	(a) $\frac{p+q+r}{3}$	-	(b) $\frac{q+r+s}{3}$	(c)	$\frac{q+s+t}{3}$	$(d)\frac{r+s+t}{3}$				
18.	A sample of	50 pens is ta	ken at rando	m, out of w	nich 15 pens	are of Reynol	ds, 17 are o	of Parker and		
	18 are of cell	o. What is th	ne point estir	nate of popu	lation portion	n of Parker?				
	(a) 0.3		(b) 0.34	(0	c) 0.36	(d) 0.4				
	 other labeled Reason (R). Select the correct answer to these questions from the codes (i), (ii), (iii) and (iv) as given below: (i) Both A and R are true and R is the correct explanation of the assertion (ii) Both A and R are true but R is not the correct explanation of the assertion (iii) A is true, but R is false (iv) A is false, but R is true 									
19.	A random va	riable X has	the followin	g distributio	on					
	X	0	1	2	3	4	5	6		
	P(X)	С	2C	2C	3C	C^2	$2C^2$	$7C^2 + C$		
	Assertion (A): Value of C is $\frac{1}{10}$.									
	Reasoning (F	Reasoning (R): Using formula $\sum P_i = 1$, we get the value of C.								
	(a) (i)	(b) (i	i)	(c) (iii)	(d) (iv)					
20. Assertion (A): A loan is said to be amortized if each in principal. Reasoning (R): If the market value of a share is less that premium.							-	-		
	(a) (i)	(b) (i	i)	(c) (iii)	(d) (iv)					
				SECT	ION – B					
	(All qu	estions are c	ompulsory.	In case of in	ternal choice	, attempt any	one questio	on only)		
21.	The present value of a perpetual income of ₹ R at the end of each 6 months is ₹ 14400. Find the value of R if money is worthy 8% compounded quarterly.									

22.	If A is a square matrix such that $A^2 = A$, then find the value of
	$(I + A)^3 - 7A.$
	OR
	If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$, show that $A^{-1} = \frac{1}{19}A$.
23.	A dealer deals in only two items– wrist watch and wall clock. He has \gtrless 60,000 to invest and has storage space of at most 50 pieces. A wrist watch costs \gtrless 3000 and a wall clock \gtrless 750. He estimates that from the sale of one wrist watch, he can make a profit of \gtrless 300 and that from the sale of one wall clock a profit of \gtrless 90. Formulate the linear programming problem to maximise dealer's profit. (Assuming that he can sell all the items which he buys.)
24.	A motorboat takes half time to cover a certain distance downstream than upstream. Find the ratio between its speed in still water and the speed of current. OR A runs 4 times as fast as B. If A gives B a start of 60 meters, how fast must the goal on the race course be so that A and B reach at the same time.
25.	Mr Rathi invested ₹ 2,00,000 in a fund. At the end of the year the value of the fund is ₹ 2,50,000. What is the nominal rate of interest, if the market price is same at the end of the year?. SECTION – C
	(All questions are compulsory. In case of internal choice, attempt any one question only)
26.	Show that the function $f(x) = 4x^3 - 18x^2 + 27x - 7$ is always increasing on R .
27.	Two booksellers A and B sell the textbook of Mathematics and Applied Mathematics. In the month of March, bookseller A sold 250 books of Mathematics and 400 books of Applied Mathematics whereas bookseller B sold 230 books of Mathematics and 425 books of Applied Mathematics. In the month of April, bookseller A sold 550 books of Mathematics and 300 books of Applied Mathematics and bookseller B sold 270 books of Mathematics and 450 books of Applied Mathematics. Represent the given information into matrix form and find the total sale for both the booksellers in the month of March and April, using matrix algebra.
28.	Evaluate $\int \frac{e^x(1+x)}{(1+xe^x)^2} dx$ OR $\int \frac{1}{(x-1)(x+3)} dx$ The supply function for a commodity is $p = x^2 + 4x + 5$ where x denotes supply. Find the
29.	The supply function for a commodity is $p = x^2 + 4x + 5$ where x denotes supply. Find the producers' surplus when the price is 10. OR Find the consumers' surplus for the demand function $p = 25 - x - x^2$ when $p_0 = 19$.
30.	Mr. X takes a loan of ₹2,00,000 with 10% annual interest rate for 5 years. Calculate EMI under Flat

	Rate system.
31.	10 years ago, Sandeep set up a sinking fund to save for his son's higher studies. At the end of 10 years, he has received an amount of ₹ 10,21,760. What amount did he put in the sinking fund at the end of every 6 months for the tenure, which paid him 5% p.a. compounded semi-annually? [Use $(1.025)^{20} = 1.6386$]
	SECTION – D
	(All questions are compulsory. In case of internal choice, attempt any one question only)
32.	The probability that Rohit will hit a shooting target is $\frac{2}{3}$. While preparing for an international
	shooting competition, Rohit aims to achieve the probability of hitting the target at least once to be 0.99. What is the minimum number of chances must he shoot to attain this probability?
	OR
	Suppose 2% of the items made by a factory are defective. Using Poisson distribution on a sample of 100 items, find the probability that there are at most 2 defective items
33.	A wire 40 m length is to be cut into two pieces. One of the pieces is to be made into a square and
55.	the other into a circle. What should be the lengths of the two pieces so that the combined area of
	the square and the circle is minimum?
	OR
	A radio manufacturer finds that he can sell x radios per week at \gtrless p each, where p = 2(100 - x/4). His cost of production of x radios per week is \gtrless (120x + x ² /2). Show that his profit is maximum when the production is 40 radios per week. Also find his maximum profit per week.
34.	
	Determine the product $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to solve the
	system of equations: $x - y + z = 4$, $x - 2y - 2z = 9$, $2x + y + 3z = 1$.
35.	A dietician has to develop a special diet using two foods P and Q. Each packet (containing 30 g) of food P contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity of food Q contains 3 units of calcium, 20 units of iron, 4 units of
	cholesterol and 3 units of vitamin A. The diet requires atleast 240 units of calcium, atleast 460 units of iron and at most 300 units of cholesterol. How many packets of each food should be used to
	or non and at most 500 units of enoresteror. Now many packets of each 1000 should be used to

	minimise	the amo	unt of vitam	in A in the di	et? What	is the min	imum amount of vitamin A?	
	SECTION – E							
	(All	question	is are compu	lsory. In case	e of intern	al choice,	attempt any one question only)	
36.				(CASE STUD)Y — I		
	An overhea	d water t	ank has three	e pipes A, B an	d C attach	ed to it (as	shown in figure (II)). The inlet pipes A	
	and B can fi	ill the em	pty tank inde	pendently in 2	20 hours a	nd 30 hour	s respectively. The outlet pipe C alone	
	can empty a	a full tank	k in 60 hours.					
	Inlet pipe 8							
	Based or	n the abo	ve informatio	on, answer the	following	questions	. Show steps to support your answers.	
	when the ta completely	ank is fille ?	ed to one- thi	rd of its total o	apacity, h	ow long wi	If pipes A and B are closed at the time Il pipe C take to empty the tank e three pipes are opened	
	simultaneo	-						
			ipes A. B and	C are opened	(in order)	at 5 am. 8	am and 9 am respectively, to fill the	
			•	•	()	, .		
	empty tank. At what time the tank is full? OR							
	Given that the tank is half-full, only pipe C is opened at 6 AM, to empty the tank. After closing the pipe C							
	and an hou tank be fille		-	is filled compl	letely by p	ipe A and E	3 together. In how many hours will the (1+1+2)	
37.	When observed	rved over	a long period	l of time, a tim	ne series da	ata can pree	dict trend that can forecast increase or	
		-				-	cal studies can benefit a business for	
	•	-			•		hematically, for finding a line of best-fit	
	to represent	t a trend,	many method	s are available	e. Methods	like movii	ng-averages and least-squares squares are	
				,	K	Q	•	
	some of the	techniqu	les to predict	such trends.				
	-	uns a stee	el industry an	d the record o	f his sales	of items fo	r the period of 2001 - 2005 is as	
	follows:	1	1	1	-	-	,	
	Year	2001	2002	2003	2004	2005		
	Sales	160	185	220	300	510		
	(in lakh)							

 Based on the above information answer the following questions: a) By taking year 2003 as origin, use method of least-squares to find the best-fit trend line equation for Mr. Rajat business. Show the steps of your working. OR 						
Mr. Rajat business. Show the steps of your working.						
OP						
ŬŔ.						
Demonstrate the technique to fit the best-suited straight-line trend by the method of 3-years moving						
averages.						
b) What are the estimated sales for Mr. Rajat business for year 2010?						
c) Mr. Rajat wishes to grow his business to yearly sale of ₹ 1090 lakhs. In which year will he be able to						
reach his target? (2+1+1)						
According to an educational board survey, it was observed that class XII students apply at least one to four						
weeks ahead of colleges application deadline. Let X represent the week when an average student applies						
ahead of a college's application deadline and the probability of student to get admission in the college						
P(X = x) is given as follows:						
$\int \frac{kx}{c}$ when $x = 0, 1 \text{ or } 2$						
$\begin{pmatrix} 6\\ (1-k) \end{pmatrix} r$						
$P(X = x) = \sqrt{\frac{(1 - k)x}{6}}$ when $x = 3$						
kx when $x = 3$						
$\frac{1}{2}$						
$P(X = x) = \begin{cases} \frac{kx}{6} & \text{when } x = 0, 1 \text{ or } 2\\ \frac{(1-k)x}{6} & \text{when } x = 3\\ \frac{kx}{2} & \text{when } x = 4\\ 0 & \text{when } x > 4 \end{cases}$						
Where k is a real number.						
Based on the above information answer the following questions:						
a) Find the value of k.						
b) What is the probability that Sarita will get admission in the college, given that she applied at least 2						
weeks ahead of application deadline?						
c) Calculate the mathematical expectation of number of weeks taken by a student to apply ahead of a						
college's application deadline.						
OR						
To promote early admissions, the college is offering scholarships to the students for applying ahead						
of deadline as follows: ₹ 50000 for applying 4 weeks early, ₹ 20000 for applying 3 weeks early, ₹						
12000 for applying 2 weeks early, and ₹ 9600 for applying 1 week early What is the expected scholarship offered by the college?						