Name _____

Section____

CRPF PUBLIC SCHOOL, ROHINI PRE-BOARD -2 EXAMINATION (2023-24) CLASS XII MATHEMATICS (SET-B)

Time Allowed: 3 hrs

Maximum Marks: 80

General Instructions:

1. This Question paper contains - **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion Reasoning based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

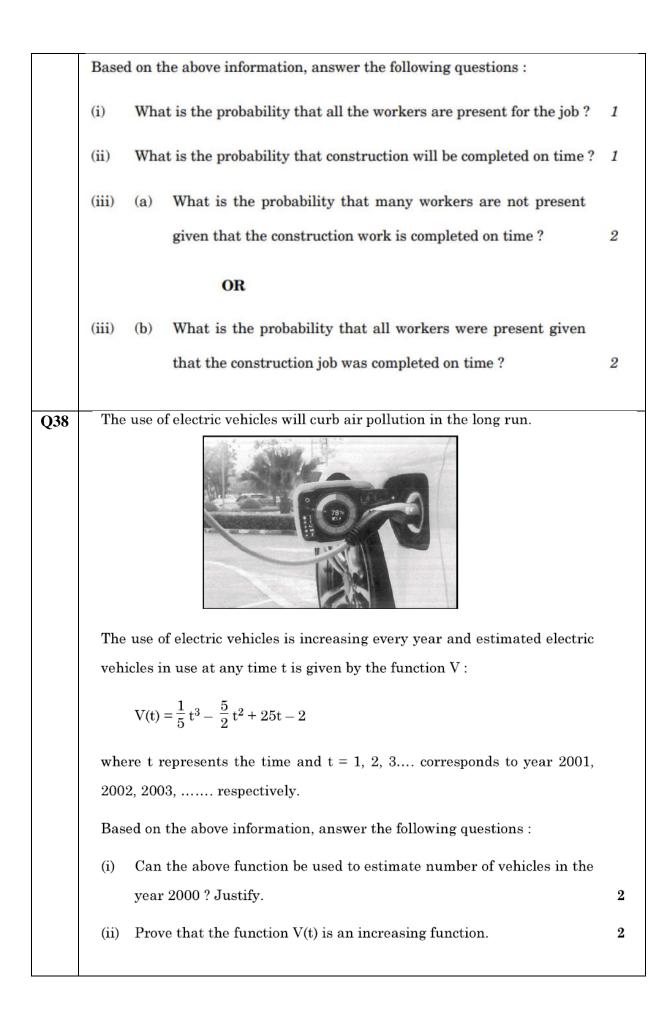
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section **E** has **3 source based/case based/passage based/integrated units of assessment** (4 marks each) with sub parts.

	SECTION – A (MCQ) 1 Mark Questions	
Q1	If $A = \begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ and $2A + B$ is a null matrix, then B is equal to :	
	(a) $\begin{bmatrix} 6 & 8 \\ 10 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} -6 & -8 \\ -10 & -4 \end{bmatrix}$	
	(c) $\begin{bmatrix} 5 & 8\\ 10 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -8\\ -10 & -3 \end{bmatrix}$	
Q2	Let A be a 3×3 matrix such that $ adj A = 64$. Then $ A $ is equal to :	
	(a) 8 only (b) -8 only	
	(c) 64 (d) $8 \text{ or } -8$	
Q3	If $A = \begin{bmatrix} 1 & 4 & x \\ z & 2 & y \\ -3 & -1 & 3 \end{bmatrix}$ is a symmetric matrix, then the value of $x + y + z$	
	If $A = \begin{bmatrix} z & 2 \end{bmatrix} y$ is a symmetric matrix, then the value of $x + y + z$	
	$\begin{bmatrix} -3 & -1 & 3 \end{bmatrix}$	
	is :	
	(a) 10 (b) 6	
	(c) 8 (d) 0	
Q4	The interval in which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing, is	
	(a) $(-1, \infty)$ (b) $(-2, -1)$	
	(a) $(-1, \infty)$ (b) $(-2, -1)$ (c) $(-\infty, -2)$ (d) $[-1, 1]$	

Q5	If the set A contains 5 elements and the set B one-one and onto mapping from A to B is	contains 6 elements, then the number of both
	(a) 720	(b) 120
	(c) 30	(d) 0
Q6	The sum of the order and the	e degree of the differential
	equation $\left(\frac{d^3y}{dx^3}\right)^2 + 3x\left(\frac{d^2y}{dx^2}\right)^4 = \log \left(\frac{d^2y}{dx^2}\right)^4$	gx, is:
) 6
07) 4
Q7	The number of feasible solutions of given as	f the linear programming problem
	Maximize $z = 15x + 30y$ subject to con	straints :
	$3x + y \le 12, x + 2y \le 10, x \ge 0, y \ge 0$	
	(a) 1	(b) 2
	(c) 3	(d) infinite
Q8	In \triangle ABC, $\overrightarrow{AB} = \hat{i} + \hat{j} + 2\hat{k}$ and \overrightarrow{AC}	$=3\hat{i} - \hat{j} + 4\hat{k}$. If D is mid-point of
	BC, then vector \overrightarrow{AD} is equal to :	
		(b) $2\dot{i} - 2\dot{j} + 2\dot{k}$
	(c) $\hat{i} - \hat{j} + \hat{k}$ ((d) $2\hat{i} + 3\hat{k}$
Q9	$\frac{\pi}{6}$	
	$\int_{0}^{6} \sec^{2}(x - \frac{\pi}{6}) dx \text{ is equal to :}$	
	(a) $\frac{1}{\sqrt{3}}$	(b) $-\frac{1}{\sqrt{3}}$
		(d) $-\sqrt{3}$
Q10	If for a square matrix A, $A^2 - 3A + 1$ value of x + y is :	$I = O$ and $A^{-1} = xA + yI$, then the
		b) 2
		d) – 3
Q11	The value of $(\hat{i} \times \hat{j})$. $\hat{j} + (\hat{j} \times \hat{i})$.	x is:
	(a) 2	(b) 0
	(c) 1	(d) – 1


Q12	of a	corner points of the feasible region in the graphical representation linear programming problem are $(2, 72)$, $(15, 20)$ and $(40, 15)$. If 8x + 9y be the objective function, then :
	(a)	z is maximum at (2, 72), minimum at (15, 20)
	(b)	z is maximum at (15, 20), minimum at (40, 15)
	(c)	z is maximum at (40, 15), minimum at (15, 20)
	(d)	z is maximum at (40, 15), minimum at (2, 72)
Q13	If A	$ = 2$, where A is a 2×2 matrix, then $ 4A^{-1} $ equals :
	(a)	4 (b) 2
	(c)	8 (d) $\frac{1}{32}$
Q14	If P(A	$A \cap B$ = $\frac{1}{8}$ and $P(\overline{A}) = \frac{3}{4}$, then $P\left(\frac{B}{A}\right)$ is equal to :
	(a) (c)	$\frac{1}{2}$ (b) $\frac{1}{3}$
	(c)	$\frac{1}{6}$ (d) $\frac{2}{3}$
Q15	If a v	vector makes an angle of $\frac{\pi}{4}$ with the positive directions of both x-axis
	and y	y-axis, then the angle which it makes with positive z-axis is :
	(a)	$\frac{\pi}{4}$ (b) $\frac{3\pi}{4}$
	(c)	$\frac{\pi}{2}$ (d) 0
Q16	The g	general solution of the differential equation x dy $-\left(1+x^2\right)$ dx = dx
	is :	
	(a)	y = $2x + \frac{x^3}{3} + C$ (b) y = $2\log x + \frac{x^3}{3} + C$ y = $\frac{x^2}{2} + C$ (d) y = $2\log x + \frac{x^2}{2} + C$
Q17		$= \frac{\cos x - \sin x}{\cos x + \sin x}, \text{ then } \frac{dy}{dx} \text{ is :}$
	(a)	$-\sec^2\left(\frac{\pi}{4}-\mathbf{x}\right)$ (b) $\sec^2\left(\frac{\pi}{4}-\mathbf{x}\right)$
	(c)	$\log \left \sec \left(\frac{\pi}{4} - \mathbf{x} \right) \right \qquad (d) \qquad -\log \left \sec \left(\frac{\pi}{4} - \mathbf{x} \right) \right $

Q18	Direction cosines of the line $\frac{x-1}{2} = \frac{1-y}{3} = \frac{2z-1}{12}$ are :	
	(a) $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$ (b) $\frac{2}{\sqrt{157}}, -\frac{3}{\sqrt{157}}, \frac{12}{\sqrt{157}}$	
	(c) $\frac{2}{7}, -\frac{3}{7}, -\frac{6}{7}$ (d) $\frac{2}{7}, -\frac{3}{7}, \frac{6}{7}$	
	Assertion Reasoning Based Questions	
Q19	Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R	
	Assertion (A) : Range of $[\sin^{-1} x + 2 \cos^{-1} x]$ is $[0, \pi]$.	
	<i>Reason</i> (<i>R</i>): Principal value branch of $\sin^{-1} x$ has range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.	
	 In the light of the above statements, choose the <i>most appropriate</i> answer from the options given below a. Both A and R are correct and R is the correct explanation of A b. Both A and R are correct but R is NOT the correct explanation of A c. A is correct but R is not correct d. A is not correct but R is correct 	
Q20	Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R	
	Assertion (A): A line through the points $(4, 7, 8)$ and $(2, 3, 4)$ is parallel	
	to a line through the points $(-1, -2, 1)$ and $(1, 2, 5)$.	
	Reason (R): Lines $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ are parallel if $\overrightarrow{b_1} \cdot \overrightarrow{b_2} = 0$.	
	 In the light of the above statements, choose the <i>most appropriate</i> answer from the options given below a. Both A and R are correct and R is the correct explanation of A b. Both A and R are correct but R is NOT the correct explanation of A c. A is correct but R is not correct d. A is not correct but R is correct 	
	SECTION – B (Very Short Answer (VSA)-type questions) 2 Marks Each	
Q21	Evaluate $\sin^{-1}\left(\sin\frac{3\pi}{4}\right) + \cos^{-1}(\cos\pi) + \tan^{-1}(1).$	
	OR	
	Draw the graph of $\cos^{-1} x$, where $x \in [-1, 0]$. Also, write its range.	

Q22	If the projection of the vector $\hat{i} + \hat{j} + \hat{k}$ on the vector $p\hat{i} + \hat{j} - 2\hat{k}$ is $\frac{1}{3}$,
	then find the value(s) of p.
Q23	A particle moves along the curve $3y = ax^3 + 1$ such that at a point with
	x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate.
	Find the value of a.
	OR
	Show that the function $f(x) = \frac{16 \sin x}{4 + \cos x} - x$, is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.
Q24	Find the coordinates of points on line $\frac{x}{1} = \frac{y-1}{2} = \frac{z+1}{2}$ which are at a
	distance of $\sqrt{11}$ units from origin.
Q25	Sketch the region bounded by the lines $2x + y = 8$, $y = 2$, $y = 4$ and the
	y-axis. Hence, obtain its area using integration.
026	SECTION – C (Short Answer (SA)-type questions) 3 Marks Each
Q26	Determine graphically the minimum value of the following objective
	function :
	z = 500x + 400y
	subject to constraints
	$\mathbf{x} + \mathbf{y} \le 200,$
	$x \ge 20,$
	$y \ge 4x$,
	$y \ge 0.$
Q27	Two balls are drawn at random one by one with replacement from an
	urn containing equal number of red balls and green balls. Find the
	probability distribution of number of red balls. Also, find the mean of
	the random variable.
	OR
	A and B are independent events such that $P(A \cap \overline{B}) = \frac{1}{4}$ and
	$P(\overline{A} \cap B) = \frac{1}{6}$. Find P(A) and P(B).
Q28	Find : $\int \frac{x^4}{(x-1)(x^2+1)} dx$
	OR
	Find :
	$\int \frac{\cos \theta}{\cos \theta} d\theta$
	$\int \frac{\cos \theta}{\sqrt{3 - 3\sin \theta - \cos^2 \theta}} \mathrm{d}\theta$
	·

 through the point (1, 2, -4) and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines. OR A line <i>l</i> passes through point (-1, 3, -2) and is perpendicular to both 	Q29	Find the general solution of the differential equation :
ORFind the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$, given that $y = 1$ when $x = 0$.Q30Find the area of the following region using integration : $((x, y) : y^2 \le 2x$ and $y \ge x - 4$?Q31Differentiate $\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$ w.r.t. $\sin^{-1}(2x\sqrt{1-x^2})$.SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32If matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A^{-1} and hence solve the followingsystem of linear equations : $3x + 2y + z = 2000$ $4x + y + 3z = 2500$ $x + y + z = 900$ Q33Find the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines.ORA line l passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l . Hence, obtain its distance from origin.Q34		$(x^2 + 1)\frac{dy}{dt} + 2xy = \sqrt{x^2 + 4}$
Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}, \text{ given that } y = 1 \text{ when } x = 0.$ Q30 Find the area of the following region using integration : $\{(x, y) : y^2 \le 2x \text{ and } y \ge x - 4\}$ Q31 Differentiate sec ⁻¹ $\left(\frac{1}{\sqrt{1-x^2}}\right)$ w.r.t. sin ⁻¹ $(2x\sqrt{1-x^2})$. SECTION - D (Long Answer (LA)-type questions) 5 Marks Each Q32 If matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}, \text{ find } A^{-1} \text{ and hence solve the following}$ system of linear equations : 3x + 2y + z = 2000 4x + y + 3z = 2500 x + y + z = 900 Q33 Find the vector and the Cartesian equations of a line passing through the point (1, 2, -4) and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines. OR A line <i>l</i> passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line <i>l</i> . Hence, obtain its distance from origin. Q34 Evaluate : $\pi/2$		uw la
$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}, \text{ given that } y = 1 \text{ when } x = 0.$ $Q30 \text{Find the area of the following region using integration :} \\ \{(x, y) : y^2 \le 2x \text{ and } y \ge x - 4\}$ $Q31 \text{Differentiate sec}^{-1} \left(\frac{1}{\sqrt{1 - x^2}}\right) \text{ w.r.t. sin}^{-1} (2x\sqrt{1 - x^2}).$ $SECTION - D (\text{Long Answer (LA)-type questions) 5 Marks Each}$ $Q32 \text{If matrix } A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}, \text{ find } A^{-1} \text{ and hence solve the following}$ $3x + 2y + z = 2000$ $4x + y + 3z = 2500$ $x + y + z = 900$ $Q33 \text{Find the vector and the Cartesian equations of a line passing}$ through the point $(1, 2, -4)$ and parallel to the line joining the points $A(3, 3, -5)$ and $B(1, 0, -11)$. Hence, find the distance between the two lines. OR $A \text{ line } l \text{ passes through point } (-1, 3, -2) \text{ and is perpendicular to both}$ the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l . Hence, obtain its distance from origin. $Q34 \text{Evaluate :}$ $\frac{\pi/2}{2}$		
Q30Find the area of the following region using integration : $\{(x, y) : y^2 \le 2x \text{ and } y \ge x - 4\}$ Q31Differentiate sec ⁻¹ $\left(\frac{1}{\sqrt{1-x^2}}\right)$ w.r.t. sin ⁻¹ $(2x\sqrt{1-x^2})$.SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32If matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A ⁻¹ and hence solve the following system of linear equations : $3x + 2y + z = 2000$ $4x + y + 3z = 2500$ $x + y + z = 900$ Q33Find the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines.ORA line <i>l</i> passes through point $(-1, 3, -2)$ and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line <i>l</i> . Hence, obtain its distance from origin.Q34Evaluate : $\pi/2$		1
Q31 $\{(x, y) : y^2 \le 2x \text{ and } y \ge x - 4\}$ Q31Differentiate $\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$ w.r.t. $\sin^{-1}(2x\sqrt{1-x^2})$.SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32If matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A^{-1} and hence solve the followingsystem of linear equations : $3x + 2y + z = 2000$ $4x + y + 3z = 2500$ $x + y + z = 900$ Prince of the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points $A(3, 3, -5)$ and $B(1, 0, -11)$. Hence, find the distance between the two lines.ORA line l passes through point $(-1, 3, -2)$ and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l . Hence, obtain its distance from origin.Q34		$\frac{dx}{dx} = \frac{d}{x^2 + y^2}$, given that $y = 1$ when $x = 0$.
Q31Differentiate sec^{-1} $\left(\frac{1}{\sqrt{1-x^2}}\right)$ w.r.t. sin^{-1} $(2x\sqrt{1-x^2})$.SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32If matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A^{-1} and hence solve the followingsystem of linear equations : $3x + 2y + z = 2000$ $4x + y + 3z = 2500$ $x + y + z = 900$ Find the vector and the Cartesian equations of a line passingthrough the point $(1, 2, -4)$ and parallel to the line joining thepoints $A(3, 3, -5)$ and $B(1, 0, -11)$. Hence, find the distancebetween the two lines.ORA line l passes through point $(-1, 3, -2)$ and is perpendicular to boththe lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equationof the line l . Hence, obtain its distance from origin.Q34	Q30	Find the area of the following region using integration :
Differentiate sec ⁻¹ $\left[\frac{1}{\sqrt{1-x^2}}\right]$ w.r.t. sin ⁻¹ $(2x\sqrt{1-x^2})$.SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32If matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A^{-1} and hence solve the followingsystem of linear equations : $3x + 2y + z = 2000$ $4x + y + 3z = 2500$ $x + y + z = 900$ Find the vector and the Cartesian equations of a line passingthrough the point $(1, 2, -4)$ and parallel to the line joining thepoints $A(3, 3, -5)$ and $B(1, 0, -11)$. Hence, find the distancebetween the two lines.ORA line l passes through point $(-1, 3, -2)$ and is perpendicular to boththe lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equationof the line l . Hence, obtain its distance from origin.Q34		$\{(x, y) : y^2 \le 2x \text{ and } y \ge x - 4\}$
SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32If matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A^{-1} and hence solve the followingsystem of linear equations : $3x + 2y + z = 2000$ $4x + y + 3z = 2500$ $x + y + z = 900$ Q33Find the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points $A(3, 3, -5)$ and $B(1, 0, -11)$. Hence, find the distance between the two lines.OR A line l passes through point $(-1, 3, -2)$ and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l . Hence, obtain its distance from origin.Q34Evaluate : $\pi/2$	Q31	\mathbf{D} if 1 1 1 1
Q32If matrix A = $\begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A ⁻¹ and hence solve the followingsystem of linear equations : $3x + 2y + z = 2000$ $4x + y + 3z = 2500$ $x + y + z = 900$ Q33Find the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines.OR A line l passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l. Hence, obtain its distance from origin.Q34Evaluate : $\pi/2$		
system of linear equations : 3x + 2y + z = 2000 $4x + y + 3z = 2500$ $x + y + z = 900Q33 Find the vector and the Cartesian equations of a line passing through the point (1, 2, -4) and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines.ORA line l passes through point (-1, 3, -2) and is perpendicular to both the lines \frac{x}{1} = \frac{y}{2} = \frac{z}{3} and \frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}. Find the vector equation of the line l. Hence, obtain its distance from origin.Q34 Evaluate :\frac{\pi/2}{2}$		SECTION – D (Long Answer (LA)-type questions) 5 Marks Each
system of linear equations : 3x + 2y + z = 2000 $4x + y + 3z = 2500$ $x + y + z = 900Q33 Find the vector and the Cartesian equations of a line passing through the point (1, 2, -4) and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines.ORA line l passes through point (-1, 3, -2) and is perpendicular to both the lines \frac{x}{1} = \frac{y}{2} = \frac{z}{3} and \frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}. Find the vector equation of the line l. Hence, obtain its distance from origin.Q34 Evaluate :\frac{\pi/2}{2}$	Q32	$\begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$
system of linear equations : 3x + 2y + z = 2000 $4x + y + 3z = 2500$ $x + y + z = 900Q33 Find the vector and the Cartesian equations of a line passingthrough the point (1, 2, -4) and parallel to the line joining thepoints A(3, 3, -5) and B(1, 0, -11). Hence, find the distancebetween the two lines.ORA line l passes through point (-1, 3, -2) and is perpendicular to boththe lines \frac{x}{1} = \frac{y}{2} = \frac{z}{3} and \frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}. Find the vector equationof the line l. Hence, obtain its distance from origin.Q34 Evaluate :\pi/2$		If matrix $A = \begin{bmatrix} 4 & 1 & 3 \end{bmatrix}$, find A^{-1} and hence solve the following
Q33 Since $X = 2y + z = 2000$ 4x + y + 3z = 2500 x + y + z = 900 Q33 Find the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines. OR A line <i>l</i> passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line <i>l</i> . Hence, obtain its distance from origin. Q34 Evaluate : $\pi/2$		1 1 1
Q33 $4x + y + 3z = 2500$ $x + y + z = 900$ Q33Find the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points A $(3, 3, -5)$ and B $(1, 0, -11)$. Hence, find the distance between the two lines.ORA line l passes through point $(-1, 3, -2)$ and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l . Hence, obtain its distance from origin.Q34Evaluate : $\pi/2$		system of linear equations :
Q33 $4x + y + 3z = 2500$ $x + y + z = 900$ Q33Find the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points A $(3, 3, -5)$ and B $(1, 0, -11)$. Hence, find the distance between the two lines.ORA line l passes through point $(-1, 3, -2)$ and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l . Hence, obtain its distance from origin.Q34Evaluate : $\pi/2$		
Q33Find the vector and the Cartesian equations of a line passing through the point $(1, 2, -4)$ and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines.OR A line l passes through point $(-1, 3, -2)$ and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line l. Hence, obtain its distance from origin.Q34Evaluate : $\pi/2$		
through the point (1, 2, -4) and parallel to the line joining the points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance between the two lines. OR A line <i>l</i> passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line <i>l</i> . Hence, obtain its distance from origin. Q34 Evaluate : $\frac{\pi/2}{2}$		x + y + z = 900
points A(3, 3, - 5) and B(1, 0, -11). Hence, find the distance between the two lines. OR A line <i>l</i> passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line <i>l</i> . Hence, obtain its distance from origin. Q34 Evaluate : $\frac{\pi/2}{2}$	Q33	Find the vector and the Cartesian equations of a line passing
ORA line l passes through point (-1, 3, -2) and is perpendicular to boththe lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equationof the line l. Hence, obtain its distance from origin.Q34Evaluate : $\pi/2$		through the point $(1, 2, -4)$ and parallel to the line joining the
OR A line <i>l</i> passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line <i>l</i> . Hence, obtain its distance from origin. Q34 Evaluate : $\frac{\pi/2}{2}$		points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance
A line <i>l</i> passes through point (-1, 3, -2) and is perpendicular to both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line <i>l</i> . Hence, obtain its distance from origin. Q34 Evaluate : $\frac{\pi/2}{2}$		between the two lines.
the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation of the line <i>l</i> . Hence, obtain its distance from origin. Q34 Evaluate : $\frac{\pi/2}{2}$		OR
of the line l. Hence, obtain its distance from origin. Q34 Evaluate : $\pi/2$		A line l passes through point (-1, 3, -2) and is perpendicular to both
Q34 Evaluate : $\pi/2$		the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation
$\pi/2$		of the line l . Hence, obtain its distance from origin.
	Q34	Evaluate :
$\int_{0} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$		
		$\int \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$
OR		0 OR
		-
Evaluate : $\int_{0}^{\frac{\pi}{2}} \sin 2x \tan^{-1} (\sin x) dx$		Evaluate : $\int_{0}^{z} \sin 2x \tan^{-1} (\sin x) dx$

035	
Q35	A function f: $[-4, 4] \rightarrow [0, 4]$ is given by $f(x) = \sqrt{16 - x^2}$. Show that f is an
	onto function but not a one-one function. Further, find all possible values
	of 'a' for which $f(a) = \sqrt{7}$.
	SECTION – E (Case Study Based Questions) 4 Marks Each
Q36	Sooraj's father wants to construct a rectangular garden using a brick wall
	on one side of the garden and wire fencing for the other three sides as
	shown in the figure. He has 200 metres of fencing wire.
	Based on the above information, answer the following questions :
	(i) Let 'x' metres denote the length of the side of the garden
	perpendicular to the brick wall and 'y' metres denote the length of
	the side parallel to the brick wall. Determine the relation
	representing the total length of fencing wire and also write $A(x)$,
	the area of the garden.
	(ii) Determine the maximum value of A(x). 2
Q37	A building contractor undertakes a job to construct 4 flats on a plot along
	with parking area. Due to strike the probability of many construction
	workers not being present for the job is 0.65. The probability that many
	are not present and still the work gets completed on time is 0.35. The
	probability that work will be completed on time when all workers are
	present is 0.80.
	Let : E_1 : represent the event when many workers were not present for
	the job;
	\mathbf{E}_2 : represent the event when all workers were present; and
	E : represent completing the construction work on time.

