Pre-Board I (2023 – 24)

Subject: Mathematics (241)

Class: X

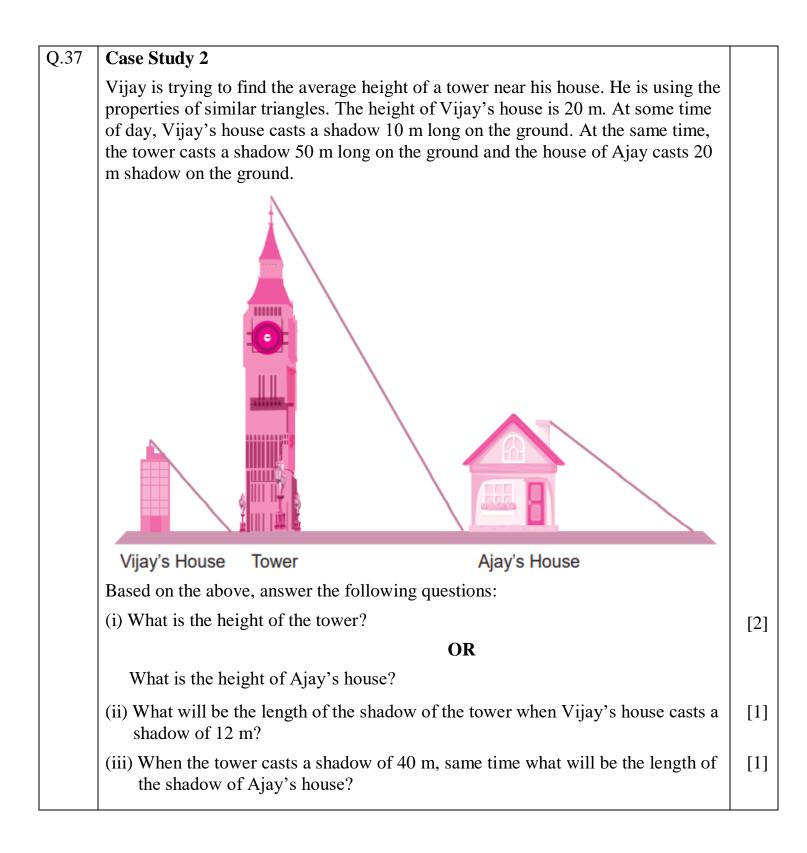
MM: 80

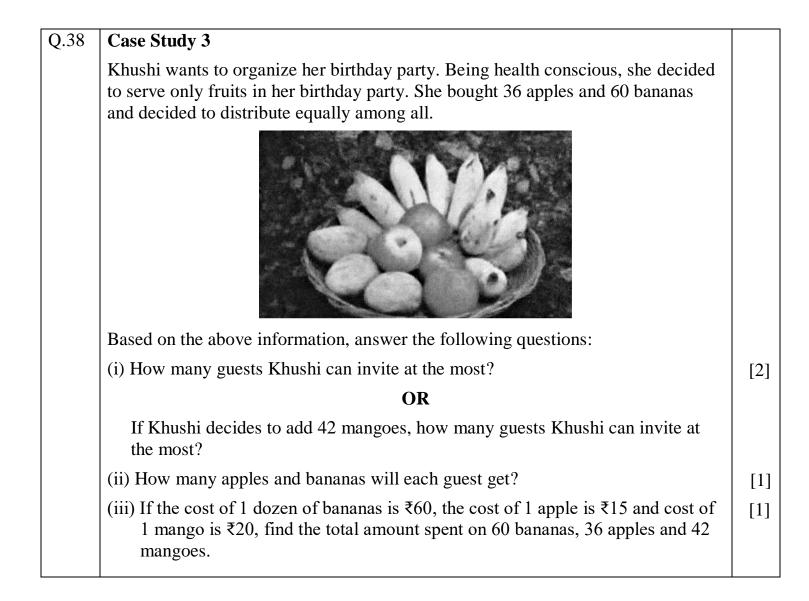
General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 2 marks each.
- 4. Section C has 6 questions carrying 3 marks each.
- 5. Section D has 4 questions carrying 5 marks each.
- 6. Section E has 3 case based integrated units of assessment (4 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 questions of 5 marks, 2 questions of 3 marks and 2 questions of 2 marks has been provided. An internal choice has been provided in the 2 questions of 2 marks of Section E.
- 8. Draw neat figures wherever required. Take π as 22/7 wherever required, if not stated.

		SECT	TION – A		
Q.1	HCM \times LCF for the numbers 70 and 30 is:			[1]	
	(A) 2100	(B) 21	(C) 210	(D) 70	
Q.2	The value of k for which the equations $3x - y + 8 = 0$ and $6x + ky = -16$ represent coincident lines, is:			+ ky = -16	[1]
	$(A) - \frac{1}{2}$	(B) $\frac{1}{2}$	(C) 2	(D) –2	
Q.3	If $p(x) = 2x^2 - x$, then $p(-1)$ is equal to:				[1]
	(A) -3	(B) 1	(C) 3	(D) −1	
Q.4	The number (8	$3 - 3\sqrt{2} + \sqrt{2}$ is:			[1]
	(A) an integer		(B) a rational numb	er	
	(C) an irration	al number	(D) a whole numbe	r	
Q.5	Which of the following <i>cannot</i> be the probability of an event?				[1]
	$(A)\frac{3}{20}$	(B) $\frac{1.4}{2}$	(C) $\frac{2}{3}$	(D) $\frac{1}{0.2}$	
Q.6	If $\triangle ABC \sim \triangle PQR$ with $\angle A = 32^{\circ}$ and $\angle R = 65^{\circ}$, then the measure of $\angle B$ is:			[1]	
	(A) 32°	(B) 65°	(C) 83°	(D) 97°	

Q.7	A quadratic polynomial having sum and product of its zeroes as 5 and 0 respectively, is:			[1]	
	(A) $x^2 + 5x$	(B) $2x(x-5)$	(C) $5x^2 - 1$	(D) $x^2 - 5x + 5$	
Q.8	The pair of linear equations $x + 2y + 5 = 0$ and $-3x - 6y + 1 = 0$ has:			[1]	
	(A) a unique solut	ion	(B) exactly two solution	ons	
	(C) infinitely man	y solutions	(D) no solution		
Q.9	Which of the follo	wing is not a quadra	atic equation?		[1]
	(A) $2(x-1)^2 = 4x^2 - 2x + 1$				
	(B) $2x - x^2 = x^2$				
	$(C)\left(\sqrt{2}x+\sqrt{3}\right)^2$	$+ x^2 = 3x^2 - 5x$			
	(D) $(x^2 + 2x)^2 =$	$x^4 + 3 + 4x^3$			
Q.10	If the perimeter an the circle is:	d the area of a circle	e are numerically equal	, then the radius of	[1]
	(A) 2 units	(B) π units	(C) 4 units	(D) 2π units	
Q.11	A quadratic equation whose one root is 2 and sum of whose roots is zero, is:			[1]	
	(A) $x^2 + 4 = 0$	(B) $x^2 - 2 = 0$	(C) $4x^2 - 1 = 0$	(D) $x^2 - 4 = 0$	
Q.12	$(3\sin^2 30^\circ - 4\cos^2 60^\circ)$ is equal to:				
	$(A)\frac{5}{4}$	(B) $-\frac{3}{4}$	$(C) - \frac{1}{4}$	$(D) - \frac{9}{4}$	
Q.13	An arc of a circle of diameter 42 cm, subtends an angle of 60° at the centre. The length of the arc (in cm) is: [Use $\pi = 22/7$]			[1]	
	(A) 11	(B) $\frac{22}{7}$	(C) 22	(D) 44	
Q.14	In figure, PQ and then ∠QOR equals	-	s to a circle with centr	The O. If $\angle QPR = 46^{\circ}$,	[1]
			R^{Q} 46° P		
	(A) 67°	(B) 134°	(C) 44°	(D) 46°	


Q.15	A circle is of ra	dius 3 cm. The distance	e between two of its par	rallel tangents is:	[1]
	(A) 12 cm	(B) 6 cm	(C) 3 cm	(D) 4.5 cm	
Q.16		a at random from a well awn is not an ace is:	shuffled pack of 52 ca	rds. The probability	[1]
	(A) $\frac{1}{13}$	(B) $\frac{9}{13}$	(C) $\frac{4}{13}$	(D) $\frac{12}{13}$	
Q.17	If the mean and	median of a data are 12	2 and 15 respectively, t	then its mode is:	[1]
	(A) 13.5	(B) 21	(C) 6	(D) 14	
Q.18	The angle subte from the base is	ended by a tower of heig	ght 200 m at a point on	the ground 200 m	[1]
	(A) 30°	(B) 45°	(C) 60°	(D) 0°	
(ii) Bo (iii) A	 A and R are true and R is the correct explanation of A. A and R are true but R is not the correct explanation of A. A is true, but R is false A is false, but R is true Assertion (A): The tangents drawn at the end points of a diameter of the circle are parallel to each other. Reason (R): The lengths of the tangents to a circle drawn from an external point 			neter of the circle are	[1]
	are equal. (A) (i)	(B) (ii)	(C) (iii)	(D) (iv)	
Q.20	Assertion (A): k is $\pm \frac{8}{3}$.	The equation $8x^2 + 3k$	2x + 2 = 0 has equal relations	pots then the value of	[1]
	Reason (R): Th	the equation $ax^2 + bx + bx$	c = 0 has equal roots, i	if $D = b^2 - 4ac = 0$.	
	(A) (i)	(B) (ii)	(C) (iii)	(D) (iv)	
		SECT	TION – B		
Q.21		hich quadrant, the point its $(2, 3)$ and $(5, -6)$ in		line segment	[2]
			OR		
	Find the coordin $A(-5, -2)$ and	nates of a point on y-ax B(3, 2).	is which is equidistant	from the points	


Q.22	In figure, PA is a tangent from an external point P to a circle with centre O. If $\angle POB = 115^{\circ}$, find $\angle APO$.	[2]
	P 0 115° B	
Q.23	In the given figure, DE AC and $\frac{BE}{EC} = \frac{BC}{CP}$. Prove that DC AP.	[2]
0.24	E C	[0]
Q.24	If $\sqrt{3} \tan \theta = 1$, find the value of $\sin^2 \theta - \cos^2 \theta$.	[2]
Q.25	Find the discriminant of the quadratic equation $3x^2 - 2x + \frac{1}{3} = 0$ and hence find the nature of its roots.	[2]
	OR	
	Find the roots of the quadratic equation $6x^2 - 2x + \frac{1}{6} = 0$.	
	SECTION – C	
Q.26	Prove that the lengths of the tangents drawn from an external point to a circle are equal.	[3]
	OR	
	In figure, the chord AB of the larger of the two concentric circles, with centre O, touches the smaller circle at C. Prove that $AC = CB$.	

Q.27	AB and CD are arcs of two concentric circles of radii 3.5 cm and 10.5 cm respectively and centred at O. Find the area of the shaded region, if $\angle AOB = 60^{\circ}$. Also, find the length of arc CD.	[3]
	C D D A GOS	
Q.28	A pair of dice is thrown once. Find the probability of getting	[3]
	(i) the same number on each dice.	[~]
	(ii) getting a number greater than 3 on each dice.	
	(iii) an even number on each dice.	
Q.29	A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Ram kept a book for one week and paid ₹ 40, while Shyam paid ₹ 60 for a book kept for 11 days. Find the total charge for a book kept for 20 days.	[3]
	OR	
	Find the values of 'm' and 'n' for which the system of linear equations $2x + 3y = 11$; $(m + n)x + (2m - n)y = 33$ has infinitely many solutions.	
Q.30	Find the zeroes of the quadratic polynomial $2x^2 + x - 10$ and verify the relationship between the zeroes and coefficients.	[3]
Q.31	Prove that $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2 \csc \theta$.	[3]
	SECTION – D	1
Q.32	A vertical tower stands on a horizontal plane and is surmounted by a flagstaff of height 5 m. From a point on the ground, the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectively. Find the height of the tower and the distance of the point from the tower. [Use $\sqrt{3} = 1.732$]	[5]
	OR	
	From the top of a tower of height 50 m, the angles of depression of the top and bottom of a pole are 45° and 60° respectively. Find	
	(i) how far the pole is from the bottom of a tower,	
	(ii) the height of the pole. (Use $\sqrt{3} = 1.732$)	

Q.33	The table below shows the daily expendence locality:	iture on food of 25 households in a	[5]	
	Daily Expenditure (₹)	Number of households		
	100 - 150	4		
	150 - 200	5		
	200 - 250	12		
	250 - 300	2		
	300 - 350	2		
	Find the mean daily expenditure on food	Also, find the mode of the data.		
Q.34	The sum of first <i>m</i> terms of an AP is $4m$ value of <i>n</i> . Also, find the 21 st term of thi		[5]	
	(DR		
	year. She saved ₹ 150 in the first month	g her daughter admitted in a school after and then increased her monthly savings able to arrange the required money after		
Q.35	The boilers are used in thermal power plants to store water and then used to produce steam. One such boiler consists of a cylindrical part in middle and two hemispherical parts at its both ends. Length of the cylindrical part is 7 m and radius of cylindrical part is $\frac{7}{2}$ m. Find the total surface area and the volume of the			
	boiler. Also, find the ratio of the volume of cylindrical part to the volume of one hemispherical part.			
		$\frac{7}{2}$ m		
		\sum		

	Section – E					
Q.36	Case Study 1					
	Students of a school are standing in rows and columns in their school playground to celebrate their annual sports day. A, B, C and D are the positions of four students as shown in the figure.					
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1]				
	Based on the above, answer the following questions:	[1]				
	(i) Find the distance between A and C.	[2]				
	(ii) Find the coordinates of the mid-point of line segment AC.	[
	(iii) Find the coordinates of a point P, if P divides the line segment AD in the ratio 1 : 2.					
	OR					
	(iii) If the sports teacher is sitting at the origin, then which of the four students is closest to him? Justify your answer.					
