Marking Scheme (Set-1)

Q	Answer				Marks
1	b	1			
2	d	1			
3	a	1			
4	с				1
5	b	1			
6	d	1			
7	a				1
8	b				1
9	b				1
10	c				1
11	b				1
12	d				1
13	a				1
14	a				1
15	d				1
16	c				1
17	c				1
18	a				1
19	b				1
20	C				1
21	Variable sepration	1			1/2
	Correct integratio	n			
	Final Answer				1/2
	UK Variable conretion				1/2
	Correct integration	l n			⁻⁷²
	Final Answer	11			1/2
	1 mai 1 mb v ci				/ 2
22	X(number of	X=0	X=1	X=2	1
	defective bulbs)	•			1
	$\mathbf{P}(\mathbf{x})$	28/45	16/45	1/45	
23	$H_{ara} \mathbf{P}_{-2500} i =$	3	10/10	1/ 10	1/2
-0	Here $R=2500$, $l=$	100			1/2
	$P=R+\frac{R}{i}$				/ -
	$P=2500+\frac{2500}{2}$				
	-2500 ± 83333333				1
	= ₹ 85833 33				
24	= (000000000000000000000000000000000000	2			
	Rate of return = $(-$	50000 X 100	= 20%		-
	OR				1
	P= 2,00,000	10			
	$I=2,00,000 \times 5 \times \frac{1}{2}$	$\frac{10}{100} = 1,00,000$			1
	$EMI = \frac{P+I}{I} = \frac{2,00,000}{1000}$	<u>)+1,00,000</u> =₹ 500	00		
	n 1	2×5			
25	Comor points	7 - 2 + 4			1
		L = 3X + 4y			-
	$ ^{A(4,0)}$	3(4)+4(0)=12			
	<u></u>				

	B(0,4)	3(0)+4(4)=16 (MAX . value)	5+ 8(0.4)	
	O(0,0)	3(0)+4(0)=0	3-	1
			$x \rightarrow 0$ 1 2 3 4 5 x	
	The line $x + y = 4$ n			
	It is clear from the t point $B(0, 4)$. So, the and the maximum v			
26	$\frac{24}{18-x} - \frac{24}{18+x} = 1$	1		
	$x^{2} + 48x - 324 =$	1		
	x=6 (Speed of stream is 6	1		
27	customer noteboo	oks pens pencils		1
	A buys 12 B buys 10	$\begin{array}{c c} 5 & 6 \\ \hline 6 & 7 \\ \end{array}$		1
	C buys 11 [12] 5	1		
	10 6 11 13			
	$\begin{bmatrix} 13.15\\ 13.95 \end{bmatrix} 12 = \begin{bmatrix} 157\\ 167 \end{bmatrix}$			
	$\begin{bmatrix} 23.45 \end{bmatrix}$ $\begin{bmatrix} 281 \\ 57.8 \end{bmatrix}$	1+1+1		
	$\begin{bmatrix} \mathbf{B} \\ \mathbf{C} \end{bmatrix} = RS \begin{bmatrix} 167.4 \\ 281.4 \end{bmatrix}$ OR			
	$\begin{vmatrix} a-b-c & 2a \\ 2b & b-c \end{vmatrix}$			
	$\begin{vmatrix} 2c & 2c \\ Applying R_1 \rightarrow R_1 + R_2 + \end{vmatrix}$			
	$= \begin{vmatrix} a+b+c & a+b+c & a \\ 2b & b-c-a \\ 2c & 2c & c \end{vmatrix}$			
	[Taking $(a + b + c)$ commo			
	$=(a+b+c)\begin{vmatrix} 1 & 1 \\ 2b & b-c-a \\ 2c & 2c \end{vmatrix}$	1 2b c-a-b		
	[Applying $C_1 \rightarrow C_1 - \vec{C}_3$ a	and $C_2 \rightarrow C_2 - C_3$]		
	$= (a+b+c) \begin{vmatrix} 0 \\ 0 \\ a+b+c \end{vmatrix} = (a+b+c) = (a+b+c)$			
	Expanding along R_1 , = $(a+b+c) [1 \times 0 + (a+b+c)]$	$(b+c)^2] = (a+b+c)^3$		
28	$y = 2 x^3 - 15x^2 +$	36 <i>x</i> – 21		1/2

		$\frac{dy}{dx} = 6x^2 - 30x + 36$						1/2
	As given curve is parallel to x –axis therefore $\frac{dy}{dx} = 6x^2 - 30x + 36 = 0$					1		
	\Rightarrow x=3,2	$\Rightarrow x=3,2$ Putting value of x in given surger $x=6.7$ respectively.						1
	Putting value of x in given curve, $y=6,7$ respectively Passing points are (3,6) and (2,7)							
	\therefore equation	n of tanger	nt is given b	y y - y1	= m(tar)	ngent)(x – x	1)	
	y - 6 = 0 $y = 6$	(x - 3)	or y or	y = 7 = 0(1 - 1)	x – 2)			
29	(2x +	1)	A + B					1
	$\frac{1}{(x+1)(x-2)} - \frac{1}{x+1} + \frac{1}{x-2}$							1
	On solving A=1/3, B=5/3 Therefore $\int \frac{(2x+1)}{(2x+1)} dx = \frac{1}{2} \int \frac{1}{(2x+1)} dx + \frac{5}{2} \int \frac{1}{(2x+1)} dx$							-
	$\int \frac{1}{(x+1)(x-2)} dx - \frac{1}{3} \int \frac{1}{(x+1)} dx + \frac{1}{3} \int \frac{1}{(x-2)} dx$							1
	J	$\frac{1}{(x+1)(x)}$	$\frac{1}{(x-2)} dx =$	$=\frac{1}{3}\log x $	c + 1 +	$\frac{1}{3}\log x $	2 + <i>c</i>	
30	. Null	Hypothesi	s - $H_0:\mu_x=\mu$	l _y ⊥				1
	Alle Test Stati	stic · Und	or H _a the te	· Π1:μ _x ≠	µy cis[cf	(10.22)]. t-	<u> </u>	
		$\frac{110}{110}$	120	123	132	125	$\frac{1}{S/\sqrt{n}}$ $\frac{1}{10-1-14}$	
	x V	120	120	125	132	123	Total	
	d=x-y	-10	2	-2	-4	4	$\sum d=-10$	1
	d^2	100	4	4	16	16	$\sum d^2 = 140$	
	The tabulated value of t for 4 d.f. and at 1% level of significance for a two-tailed test is 4.60. Since calculated value of 't' is less than tabulated t, it is not significant at 1% level of significance. Hence, the data do not provide any evidence against the null hypothesis which may be accepted. We may, therefore, conclude that there is no change in IQ after the training programme.							
31	t	У	x=t _i - 2012.5	x^2		ху	Y _t =a+bx	2.5
	2010	28	-2.5	6.25		-70	25.67	
	2011	32	-1.5	2.25		-48	29.67	
	2012	29	-0.5	0.25		-14.5	33.67	
	2013	35 40	0.5	0.25		60	37.07	
	2014	50	2.5	6.25		125	45.67	
		$\sum y=214$		Σ		$\sum xy=70$		
				$\overline{x^2}=1$	7.50			1.5
	$a = \frac{\Sigma y}{\Sigma} = 35.67$ $b = \frac{\Sigma xy}{\Sigma} = 4$							
	$y_{2016} = 49.67$						1	
32	Let the le	ngth, bread	dth and dep	th of the	open tai	nk be x, x a	nd y,	1
	respective	ely	10	dan at '	to conf.			15
	let V denotes its volume and S denotes its surface area. $V = x^2 y$ (i) $S = x^2 + 4xy$ (ii)						1.5	
		(-)						1.5

	From (i) and (ii) $S = x^2 + \frac{16}{x}$ $\frac{ds}{dx} = 2x - \frac{1600}{x^2}$ On putting $\frac{ds}{dx} = 0$ we get x^3 $\frac{d}{dx}$ From $x^3 = 800$ $, \frac{d^2s}{dx^2} > 0$		1	
	Therefore surface area is min	imum when $x=2(100)^{\frac{1}{3}}$ and	$y = (100)^{\frac{1}{3}}$	
33	i) μ=8, σ=5 X=14) Now P(.4 <z<1.2)=0.2295 No. Of students between 10 (ii) P(Z>1.2)=0.5-0.38549=0</z<1.2)=0.2295 	Z=0.4 (for X=10) to 14 years=100x.2295 -23 .1151	Z=1.2 (for	2.5 2.5
	No. Of students more than 14 OR Probability of defective buck 0.03 = 3 Let X = number of defective (i) P (no defective bu (ii) (ii) P (at most one	1 2 2		
34	 (i) EMI = ₹4832.69 (ii) Principal outstanding at b (iii) The interest paid in 40th (iv) The principal paid in 40t (v) Total interest paid=₹3996 	096.72		
35		4 5 6 7 B	9	2 2
	Feasible region is HIMJ	Objective function $7 = 22x$		
		+44 y		
	H(3/2,3/2)	77		
	L(3,0)	66		1
	M(8,0)	176 (max value)		
	J(24/11,24,11)	144		

	Therefore objective function attains its maximum value 176 at point	
	M(8,0) OR	
		2
	Y	
	20 A(0.20)	
	NPN N	
	10 B (3.8)	
	5 +	
	C(15,0)	
		1
	0 5 10 15 20 25 [^]	1
		1
	1 0	
	The line $18x + 10y = 180$ meets the co-ordinate axes at (10, 0) and (0,	
	18).	
	The coordinates of B(3,8) by solving the lines $4x + y = 20$ and $2x + 3y =$	
	30.	
	The minimum value of Z is 134 at $x = 3$ and $y = 8$	
36	(i) $3\frac{3}{7}$ hours	
	(ii) 12 hours	1
	(iii) 24 hours OR	2
	4.8 hours	2
37	(i) ₹7000	1
	(ii) ₹14000	1
	(iii) ₹21000 OR	
	330	2
38	(i) ₹410293.41	1
	(ii) ₹ 15712.67	
	(111) ₹2800276.80	2
	₹ 24167.82	