					<u>SECT</u>	TION	<u>– A</u>			
1.	(a)1	5.	(c) a skew	9.	(a) 1.4π	13.	(b) parameter	17.	(b) 5	000
			symmetric		cm/s					
2	(d) 1	6	$\frac{\text{matrix}}{(a)}$	10	(d)126	14	(d) none of these	18	(b)	10
2.	(u) + (b)	0. 7	(a) 4 (c) 216	10.	(u)120	14.	(d) none of these (b) parts of a year	10.	(u)	10
5.	600	7.	(0)210	11.	(0) 32	15.		17.	C	, ,
4.	(c)	8.	(d) t^2	12.	(c) 1.48	16.	(b) 4	20.	b)
	7.2min									
	<u>SECTION-B</u>								1	
21	$x \equiv 230$	(тос	<i>i</i> 7)							
	$x = 23 + 7 p, p \in \mathbb{Z}$						1			
	$x = 23, 30, 47, \dots$							1		
	$\frac{x = 30 \text{ as } 21 \le x < 31}{1}$						1			
22	Length of course = 500 meters									
	Time taken by B to cover by 60 meters = 12 seconds.						1			
	∴ time t	aken	by B to cover th	ie cou	$\operatorname{trse} = \left(\frac{12}{60} \times \frac{1}{5}\right)$	500)	= 100 seconds			1
	∴time ta	time taken by B to cover the course= $(100 - 12)$ seconds = 88 seconds				1				
	= 1 minute 28 seconds									
	D	1 1	- (h. e		1	К				
	Part filled by the pump in 1 hour $=\frac{1}{2}$									
	Net part filled by the pump and leak in 1 hour $=\frac{3}{7}$ 1								1	
	Emptying work done by the leak in 1 hour $=\frac{1}{2}-\frac{3}{7}=\frac{7-6}{14}=\frac{1}{14}$									
	Leak ca	n em	pty the tank in 1	4 hou	Irs.					1
23	As the p	oints	s P (3,-2), Q (8, 5	8) and	I R (k, 2) are	collin	near			
	Area of triangle PQR $=\frac{1}{2}\begin{vmatrix} 3 & -2 & 1 \\ 8 & 8 & 1 \end{vmatrix} = 0$									
	k 2 1 Solving above determinant, we get $ 3(8-2)+2(8-k)+1(16-8k) = 0$									
	18 + 10	5 – 2	k + 16 - 8k = 0	U						1
	-10k + 50 = 0									
	-10k + 50) = 0									
	k = 5									1
24	Given c	urrer	nt value of invest	ment	= Rs. 60000					
	Cost of	inves	stment = $Rs. 500$	000						
	Rate of	retur	$n = \frac{60000 - 50000}{50000}$	X 100)%					1
			= 20%							1
25	Let num	ber o	of necklaces and	brace	elets produce	d by f	irm per day be x and y,	respectiv	vely.	1
	Clearly,	$\mathbf{x} \geq$	0, y ≥ 0							
	: Total number of necklaces and bracelets that the firm can handle per day is at most 24.									
	$\therefore x + y \le 24$							1		
	Since it takes one hour to make a bracelet and half an hour to make a necklace and maximum									
	number of hours available per day is 16.									
	$\therefore 12x +$	y ≤ 1	16							
	$\Rightarrow x + 2$	y≤3								
1	Let Z be	eine	profite function.							

Then, Z = 100x + 300y

MARKING SCHEME (SET-2)

\therefore The given LPP reduces to
Maximise $Z = 100x + 300y$ subject to,
$x + y \leq 24$
$x + 2y \le 32$
and x, $y \ge 0$

SECTION-C

		1		
26.	Speed downstream=6 km/h,	1		
	Speed upstream= 4 km/h, Total Time taken= 1 hour			
	Total Time taken= 1 hour			
	Distance = 2.4 km			
	OR			
	Let initially liquids P and Q be 5x and 7x litres respectively in the vessel. After drawing off 12 litres of mixture			
	Quantity of liquid P left in the mixture = $5x - \frac{5}{12}X = 5x - 5$ litres			
	Quantity of liquid Q left in the mixture = $7x - \frac{7}{12}X = 7x - 7$ litres So, quantity of	1/2		
	liquid P= $(5x - 5 + 12)$ litres = $5x + 7$ litres			
	quantity of liquid $Q = (5x - 5 + 12)$ litres	1/2		
	As per the question $=\frac{9}{7} = \frac{5x+7}{7x-7}$	1		
	63 x - 63 = 35x + 49			
	Solving we get , $x = 4$	1		
	Hence the quantity of liquid P was $5 X4 = 20$ litres and quantity of liquid Q was	1		
	7 X4 = 28 litres			
27	Here C= 900000, S= 270000, annual depreciation = 70000	1		
	Let useful life be n years. $C-S$	1		
	Now annual depreciation $=\frac{1}{n}$	1		
	n= 9 years	I		
28	4.067 , 4 , 4.03 , 4.40 , 4.40 , 3.73	1⁄2*6=3		
29	$i = .06_{p}$	1		
	$P = R + \frac{R}{i} = 3120 + 3120/.06$	1		
	getting P = Rs 55120	1		
30	Getting $f'(x) = 6x^2 + 18x + 12$			
	f(x) = 6(x+1)(x+2)	1		
	For increasing $f(x) > 0$ and for decreasing $f(x) < 0$	1		
	Increasing $(-\infty, -2) \cup (-1, \infty)$	1		
	Decreasing $(-2, -1)$	1		
	OR	1		
	(i) We have, $C = \frac{x^2}{25} + 2x$, so ,	1/2		
	the average cost function AC is given by $AC = \frac{c}{x}$ or $AC = \frac{x}{25} + 2$			
	(ii) MC is given by $\frac{2x}{25} + 2$	1/2		
	(iii) $MC = 2.4$			
	I his means that, if the production is increased by 1 unit from 5 units to 6 units, then the			
21	Cost of additional unit is approx 2.4. Write $\mu = 2 \ am \overline{k} = 2.01 \ am n = 10 \ a^2 = -0.04 \ am^2$	1		
51	where $\mu = 2 \ cmx = 2.01 \ cmn = 10 \ s^{-} = .004 \ cm^{-}$	1		
	Cetting $t = 476$	1		
	The difference in the values of sample mean and population mean is not significant	1		
	SECTION D	1		

32	Let cost of onion, wheat and rice per kg. be x,y and z respectively.			
	Equations: 4x+3y+2z=60, 2x+4y+6z=90, 6x+2y+3z=70	2		
	(0 -5 10)	2		
	Det(A)= 50, $A^{-1} = \frac{1}{50} \begin{pmatrix} 30 & 0 & -20 \end{pmatrix}$	1		
	-20 10 10 /			
	X=5, Y=8,Z=8			
33	Let $\frac{3x-2}{(x+1)(x-2)^2} = \frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$	1		
	$A = -\frac{5}{9} B = \frac{5}{9} C = \frac{4}{3}$	2		
	After integrating ensures is $\frac{5}{2}$ leader $11 \pm \frac{5}{2}$ leader $21 \pm \frac{4}{2}$			
	After integrating, answer is $-\frac{1}{9}log[x + 1] + \frac{1}{9}log[x - 2] - \frac{1}{3(x-2)} + c$	2		
	OR			
	$\int_{1}^{4} x-5 dx = \int_{1}^{4} -(x-5) dx$	1+1		
	$(x^2 -)^4$ 15	2		
	$=-(\frac{x}{2}-5x)_1=\frac{1}{2}$	1		
34	SV=200 X 100= 20000, EV=30000, CAGR= 22.47%	1.5		
	Let n number of years			
	$\left((EV)^{\frac{1}{n}} \right)$	1.5		
	$CAGR = \left(\left(\frac{2V}{SV} \right)^2 - 1 \right) X \ 100$			
		2		
	n = 2 years nearly			
35	$p = .05, n=100$ getting $\mu = np = 5$	1.5		
	(1) P(none is defective)= $.007$	1.5		
	(2) P(5 defective bulbs)= $.1822$	2		
	X = U			
	$Z = \frac{\Lambda - \mu}{6.25}$	1/2		
	When X=20 Z= -1.6	1/2		
	When $X = 40$ $Z = 1.6$	1		
	P(20 <x<40)=.8904< td=""><td>1</td></x<40)=.8904<>	1		
	Number of students scoring between 20 and $40 = 1781(approx)$			
	When $X = 25$, $Z =8$			
	P(X < 25) = .2119	1/2		
	Number of students scoring less than $25 = 424$	1/2		

SECTION E

36	(i) $(0,8)$ (ii) -32 (iii) (5,0) (iv) 15(Each 1 marks)	
37	(i) 0.15 (1 marks) (ii) 0.3 (1 marks) (iii) 0.3 OR 0.75(2 marks)	
38	$\frac{dm}{dm}\alpha - m, \frac{dm}{dm} = -km, \ p = 1 \ and q = 1, \ 2p + 3q = 5$	1/2
	$m = m_0 e^{-kt}$	1/2
	OR	1
	$\left(1 - \frac{1.1}{100}\right)m_0 = m_0 e^{-25k}, k=.000443$	2 & 2