CLASS:XII

SAMPLE QUESTION PAPER (SET-3) Marking Scheme

AppliedMathematics(241)

Sr. No.	<u>SECTION-A</u>	Marks
1	157≡ 13(modm)	1
	$\Rightarrow 157 - 13 \equiv m$	
	$\Rightarrow 144 \equiv m$	
	m is a divisor of 144, m = 2,3,4,6,8,9,12,18,24,36,72,144	
	50 < m < 144	
	(C)option	
2	(B)option	1
3	(C) Skew-symmetric matrix	1
4	(B) $ A ^3$	1
5	Speed in swimming in still water is $= 8 \text{ km/h}$	1
	Speed of stream = 4 km/h	
	Speed of swimming in downstream $= 8+4 = 12$ km/h	
	Time = DISTANCE / SPEED = 24/12 = 2hours	
	(B)option	1
6	(c) $x^3/3 - e^x + C$	1
7	at R =60 and i = $0.04/2 = 0.02$	1
	Then present value of a perpetuity	
	$P = R/I = 60/0.02 = 3000^{\circ}$	
-	(a) 3000	
8	(C) Symmetric matrix	1
9	14/3 (A)option	1
10	$CAGR = [(120000/200000)^{1/4} - 1] X 100$	1
10	$CAGR = [(1200000/200000) -1] \times 100$	1
	$CAGR = (1.56508-1) \times 100$	
	Hence, CAGR = 56.5 %	
11	t C = 40,000; n=4; S = 8000	1
	Annual depreciation = $C-S/n = (40000-8000)/4 = 8000$	
	(A) 8000	
12	(c) $y = x^3/3 + x + C$	1
13	(a) Feasibleregion	1
14	c) Weighted aggregative price index	1
15	95 - 80 15 1	1
	$\frac{1}{80-50} = \frac{1}{30} = \frac{1}{2}$	
	\Rightarrow (C) option	
16	Degree =3	1
	(C) option	
17	(B) Consumer price index	1
18	(B) 0.10	1
19	(A) Percentage	1
20	(c) $2 \log x/x$	1

21 Given sample data is	
$ \begin{array}{ c c c c c } 5,8,10,7,10,14 & \text{and } n=6 \\ (i) & \text{The point estimate of population mean is sample mean} \\ & \text{Mean} = \frac{\text{sum}}{6} \\ & = \frac{54}{6} = 9 \\ (ii) & \text{S} = \text{square root of } \Sigma (x_i - \text{mean})^2/\text{n-1} = 3.1 \end{array} $	1
(ii) $3 = square root of 2 (x_i = mean) / n = 1 = 3.1$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
23Suppose x is the number of pieces of Model A and y is the number of pieces of Model B. Then Total profit (in Rs) = 8000 x + 12000 y Let Z = 8000 x + 12000 y We now have the following mathematical model for the given problem Maximize Z = 8000 x + 12000 y (1) subject to the constraints $9x + 12y \le 180$ (Fabricating constraint) i.e. $3x + 4y \le 60$ (2) $x + 3y \le 30$ (Finishing constraint)	1
(3) $x \ge 0, y \ge 0$ (non-negative constraint)24Time taken by pipe to fill the tank is 3 hours	1
Therefore in 1 hour, $1/3$ portion of the tank is filled Again time taken by pipe to empty the tank is 4 hours Therefore in 1 hour, $1/4$ portion of the tank is emptied So net water filled in the tank in 1 hour when both the pipes are opened = $1/3 - 1/4 = 1/12$	1
Therefore time taken to fill the tank when both the pipes are opened is 12 hours $f(x) = 3x^{4} + 4x^{3} - 12x^{2} + 12$ or $f'(x) = 12x^{3} + 12x^{2} - 24x$ $= 12x (x - 1) (x + 2)$ Or $f'(x) = 0$ at $x = 0$, $x = 1$ and $x = -2$. Now $f''(x) = 36x^{2} + 24x - 24$ $= 12 (3x^{2} + 2x - 2)$ Therefore, by second derivative test, $x = 0$ is a point of local maxima and local maximum value of f at $x = 0$ is $f(0) = 12$ while $x = 1$ and $x = -2$ are the points of local minima and local minimum values of f at $x = -1$ and -2 are $f(1) = 7$ and $f(-2) = -20$, respectively $\begin{cases} f''(0) = -24 < 0 \\ f''(1) = 36 > 0 \\ f''(-2) = 72 > 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	1
<u>SECTION-C</u>	

26	Solution: Since the money Lender deducts ₹ 200 as interest while lending a loan of ₹ 2000 for 6	1
	months, therefore ₹ 200 may be treated as interest on ₹ 1800 for 6 months. Consequently, interest rate per six months is	
		1
	$i = \frac{200}{1800} = \frac{1}{9}$	1
	Thus, the equivalent effective rate of interest, r_{eff} is given by $r_{eff} = (1 + i)^2 - 1$	
	$r_{eff} = (1 + i)^2 - 1$	
	$= (1 + \frac{1}{9})^2 - 1 = 0.23456$	1
	= 23.45 %	
	P = ₹ 2,00,000	
	$I = \frac{10}{100} \times 2,00,000 \times 5 = ₹ 1,00,000$	1
	$n = 5$ years $= 5 \times 12 = 60$	
	EMI is given by the formula	
	$EMI = \left(\frac{P+I}{n}\right)$	1
	$EMI = \left(\frac{2,00,000+1,00,000}{60}\right)$	
	3,00,000	1
	$=\frac{3,00,000}{60}=₹5000$	
27	IAI = 3 (2 - 3) + 2(4 + 4) + 3 (-6 - 4) = -17 $\neq 0$	1
	Hence, A is nonsingular and so its inverse exists.	
	Now	
	A11 = -1, A12 = -8, A13 = -10	
	A21 = -5, A22 = -6, A23 = 1 A31 = -1, A32 = 9, A33 = 7	
		1
	$A^{-1} = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix}$	
	$A = \frac{17}{17} \begin{bmatrix} 0 & 0 & 7 \\ -10 & 1 & 7 \end{bmatrix}$	
	$X = A^{-1}B = -\frac{1}{17}\begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$ x = 1, y = 2 and z = 3	
	$X = A^{-1}B = -\frac{1}{-8} - 6 - 9 - 1$	
	17 -10 1 7 4	1
	x = 1, y = 2 and $z = 3$.	1
28	x = 1, y = 2 and z = 3. $\int x log(1 + x^2) dx$,	1
	Integration by parts	1
	$= \log (1 + x^2) \int x dx - \int [d/dx \log(1 + x^2) \int x dx] dx$	
	$= x^{2}/2 \log (1 + x^{2}) - \int [2x/(1 + x^{2}) \cdot x^{2}/2] dx$	1
	$= x^{2}/2 \log (1 + x^{2}) - \int x^{3}/(1 + x^{2}) dx$	
	$= x^{2}/2 \log (1 + x^{2}) - \int [x - x/(1 + x^{2})] dx$	1
	$= x^{2}/2 \log (1 + x^{2}) - x^{2}/2 + 1/2 \log (1 + x^{2}) + C$	
	$= 1/2 \left[(1+x^2) \log (1+x^2) - x^2 \right] + C$	
29	Let the rate at which the stream is flowing be 5 km/hr	1
	And the distance covered by the boat be x km.	
	According to the question	
	3(5-x) = 5+x	1
	$\Rightarrow 15 - 3x = 5 + x$ $\Rightarrow 4x = 10$	
	$\rightarrow \tau \Lambda = 10$	

	$\Rightarrow x = 2.5$										
	\therefore The stream	ım is flo	owing at	t the rate	e of 2.5	km/hr.					1
30	Commodity	Price		Quantity		p_0Q_0	p_0Q_1	p_1Q_0	p_1Q_1		
	,	2008	2012	2008	201	10~0	10~1	r1~0	71~1		1
		(p_0)	(<i>p</i> ₁)	(Q_0)	(Q_1)						1
	Rice	10	13	4	6	40	60	52	78		
	Wheat	15	13	7	8	105	120	126	144		
	Rent	25	29	5	9	125	225	145	261		
	Fuel	11	14	8	10	88	110	112	140		1
	Tuer	11	11	Total	10	359	515	435	623		
	Fisher's price	index nu	umber =	$\frac{\sum p_1 Q_0}{\sum p_0 Q_0} \times \frac{\sum}{\sum}$	$\frac{p_1Q_1}{p_0Q_1} \times 10$	$00 = \sqrt{\frac{435}{359}}$	$\times \frac{623}{515} \times 1$	00 = 121	.2		1
31											1
51	a. Test st	atistic.									1
	$z_* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{r}}$	$\frac{1}{6} = \frac{26.4}{6/\sqrt{6}}$	$\frac{-25}{40} = 1.$	4757							
	b. P-value		7 . 1 47	(77)	0700						1
	$P(Z > z_*)$ c. Conclu		2 > 1.47	57) = 0.	0700						
	Since P-va		0.0700 >	$\alpha = 0.0$	01, we C	CAN'T re	eject H ₀	: $\mu = 25$			
	We conclu										1
	$\mu > 25.$ (Some of	t us wou	ld say th	at we a	ccept th	at $\mu = 2$	25).			
					SEC	CTION-	D				
32	Probability o	f defect	tive raze	or blade	= 0.002	2					2
	m =np=10 x(
	Let X=numb			zor blad zor blad			10				3
	• •				,	9802 0.9802x	0.02				5
		(01100				0.00	= 0.019	96			
	X 7 0		20	OR							1
	X=scoresof s (i) Whe		,µ=30,ơ 3,Z=0.3								
	P(X<33)=P(,								2
					studen	tsscored	lless tha	n 33 ma	ırks		
	(::) 1171	$\mathbf{v} \mathbf{v} \mathbf{v}$	70.	darih `	V _ 15	7_1 =					2
	(ii) When P (30 <x<45)< td=""><td></td><td></td><td>ndwhen</td><td>л =43, .</td><td>L=1.3</td><td></td><td></td><td></td><td></td><td>4</td></x<45)<>			ndwhen	л =43, .	L=1.3					4
	= 0.9332 - 0.5										
	⇒	>1000 x	0.4332	= 433 s	tudents	scoredb	etween3	0and45	marks		
33	Cost of 1 sha	re = Rs	. [25+5	+1/4)] =	Rs. (12	21/4).					1
	Cost of 88 s	shares =	= Rs.[(12	21/4)*88	B] = Rs.	2662.					1
	Investment	made =	Rs. 26	52.							1
	Face value of	of 88 sh	ares = R	Rs. (88*2	25) = Rs	s. 2200.					1
	Dividend or	<u>n R</u> s. 10	<u>)0 = (15</u>	/2).							1

	Dividend on $B_{0}(2200 - B_{0})[(15/20*(1/100)*2200)] - B_{0}(165)]$	
	Dividend on Rs. 2200 = Rs. [(15/20*(1/100)*2200] = Rs. 165. Income derived = Rs. 165.	1
	Rate of interest on investment = $[(165/2662)*100] = 6.2 \%$.	
34	Let x be the number of packages of screws A and y be the number of packages of screws B that we can make.	
	Clearly, $x, y \ge 0$.	
	Total time on machine is $4 \text{ hr} = 240 \text{ min}$	1
	: for automatic machine , time = $4x+6y \le 240 \Longrightarrow 2x+3y \le 120$	
	: for hand machine, time = $6x+3y \le 240 \Longrightarrow 2x+y \le 80$	2
	The shaded region is the feasible region.	
	The profits on Screw A is Rs. 0.7 and on Screw B is Rs. 1. We need to maximize the profits, i.e. maximize $z=0.7x+y$, given the above constraints.	2
	at O, z=0 at E, z=41 at D, z=40 Hence, maximum profit is at point E(30,20).	
35	$\frac{dy}{dx} = \frac{x^2 + y^2}{x^2 + xy}$ $put \ y = vx$ $\frac{dy}{dx} = v + x \frac{dv}{dx}$	1
	$\begin{bmatrix} \overline{dx} &= v + x & \overline{dx} \end{bmatrix}$ $v + x & \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{x^2 + x \cdot v x}$ $= \frac{1 + v^2}{1 + v}$	1
	$x \frac{dv}{dx} = \frac{1+v^2}{1+v} - v$ $dv = \frac{1+v^2}{1+v} - 1+v$	1
	$x \frac{dv}{dx} = \frac{1+v^2-v-v^2}{1+v} = \frac{1-v}{1+v}$ $\int \frac{1+v}{1-v} \times dv = \int \frac{dx}{x} \Longrightarrow \int \left(1+\frac{2}{v-1}\right) dv = -\int \frac{dx}{x}$	
	$\Rightarrow \mathbf{v} + 2 \log \mathbf{v} - \mathbf{l} = -\log \mathbf{x} + \log C$	

35			
	\Rightarrow v + 2 log $ v - 1 = -\log v - 1 $	$ \mathbf{x} + \log \mathbf{C}$	
	$\Rightarrow 2 \log v-l + \log x =$	-v + log C	1
	$\Rightarrow \log \left \frac{(v-1)^2(x)}{C} \right = -v$		
	$\Rightarrow \log \left \frac{\left(\frac{y}{x} - 1\right)^2 (x)}{C} \right = \frac{-y}{x}$	<u>.</u>	1
	$\Rightarrow \log \left \frac{(y-x)^2}{Cx} \right = \frac{-y}{x}$		
	$\Rightarrow \frac{(y-x)^2}{Cx} = e^{\frac{-y}{x}}$		
	$rightarrow \mathbf{Cx}$ $\Rightarrow (\mathbf{y} - \mathbf{x})^2 = \mathbf{Cx} e^{\frac{-\mathbf{y}}{x}}$		
			1
	Given, $(x^2 + y^2)dx - 2xydy = 0$	$\Rightarrow x \frac{dv}{dx} = \frac{1 + v^2 - 2v^2}{2v}$	1
	\Rightarrow (x ² + y ²)dx = 2xydy	$\Rightarrow x \frac{dv}{dv} = \frac{1 - v^2}{2v}$	
	$\Rightarrow \frac{dy}{dx} = \frac{x^2 + y^2}{2xy} \dots (i)$	$\Rightarrow \frac{dx}{x} = \frac{2v}{1 - v^2} dv$	1
	Let $y = vx$	$\Rightarrow \frac{dx}{x} - \frac{2v}{1 - v^2} dv = 0 \dots \text{ (ii)}$	
	Thus, $\frac{dy}{dx} = v + x \frac{dv}{dx}$	Integrating both sides, we have	1
	ux ux	$\log x + \log(1 - v^2) = \log C$	1
	Thus, $v + x \frac{dv}{dx} = \frac{x^2 + (vx)^2}{2x(vx)}$	$\Rightarrow \log x(1 - v^2) = \log C$ $\Rightarrow x(1 - v^2) = C$	1
	$\Rightarrow v + x \frac{dv}{dx} = \frac{1 + v^2}{2v}$	$\Rightarrow x \left(1 - \frac{y^2}{x^2}\right) = C$	
		$\Rightarrow x \left(\frac{x^2 - y^2}{x^2}\right) = C$	
	$\Rightarrow x \frac{dv}{dx} = \frac{1 + v^2}{2v} - v$	$\Rightarrow x^2 - y^2 = Cx$	
	SEC	<u>CTION–E</u>	
36	<u>CASESTUDY –I</u> (i)2800276.80 (ii)24167.82		1 1
	(iii)410293.41		2

37	<u>CASESTUDY –II</u> Let X represent the number of bulbs that will fuse after 150 days of use in an experiment of 5 trials. The trials are Bernoulli trials. It is given that, $p = 0.05$ $\therefore q = 1 - p = 1 - 0.05 = 0.95$ X has a binomial distribution with $n = 5$ and $p = 0.05$ $\therefore P (X = x) = C_x q^{n=x} p^x$, where $x = 1, 2,n$	
	$={}^{5} C_{x}(0.95)^{5-x} \cdot (0.05)^{x}$ (i) P (none) = P (X = 0) $={}^{5} C_{0}(0.95)^{5} \cdot (0.05)^{0}$ = 1 × (0.95)^{5} = (0.95)^{5}	1
37	(ii) P (not more than one) = P (X ≤ 1) = P (X = 0) + P (X = 1) = ⁵ C ₀ (0.95) ⁵ × (0.05) ⁰ + ⁵ C ₁ (0.95) ⁴ × (0.05) ¹ = 1 × (0.95) ⁵ + 5 × (0.95) ⁴ × (0.05) = (0.95) ⁵ + (0.25) (0.95) ⁴ = (0.95) ⁴ [0.95 + 0.25] = (0.95) ⁴ × 1.2 (iii) P (more than 1) = P (X > 1) = 1 - P (X ≤ 1) = 1 - P (notmore than 1) = 1 - (0.95) ⁴ × 1.2	2
38	CASESTUDY –III(i)Pipe Cempties1tankin20h \Rightarrow 2/5 x20 = 8 hours	1
	(ii) Partoftankfilled in 1hour = $1/15+1/12-1/20=1/10$ \Rightarrow timetakentofilltankcompletely=10hours	2
	(iii) Let the tank be completely filled in 't' hours ⇒pipe A is opened for 't' hours	

pipe B is opened for ' $t-3$ ' hours	
And, pipe C is opened for 't-4' hours	
\Rightarrow In one hour, part of tank filled by pipe A = $t / 15$ th	
part of tank filled by pipe $B = t-3/15$ th	
and, part of tank emptied by pipe $C = t-4/15$ th	
Therefore $t/15 + t-3/12 - t-4/20 = 1$	
$\Rightarrow t = 10.5$, Total time to fill the tank = 10 hours 30 minute	