Applied Mathematics (Code-241) (XII) Marking Scheme (set-4)

(1 Marks for each correct Answer)

Q.N.	Answer	Q.N.	Answer	Q.N.	Answer	Q.N.	Answer
1	В	6	В	11	С	16	В
2	В	7	D	12	С	17	С
3	D	8	В	13	С	18	А
4	С	9	D	14	А	19	А
5	А	10	А	15	D	20	А

Q.No.	Solution	Marks
21	Given R= 500, P = 10,000 and $i = \frac{r}{200}$ $P = \frac{R}{i}$ $i = \frac{R}{P} = \frac{500}{10000} = \frac{1}{20}$ $\frac{r}{200} = \frac{1}{20}$	(1) (1)
	r = 10 % per annum	
22		(1) (1) or (1) (1)
23	np+npq =1.8 and n=5 Getting p =0.2 ,q= 0.8 Probability for 2 successes =P(2)= $10(0.2)^2(0.8)^3 = 0.2048$	½ ½ (1)
24	$Given t_1 = 3 \; hr \; \text{, } t_2 = 6 \; hr \; \; \text{, } \; \text{y = 2 km / h}$	

	$y - \frac{y(t_1 + t_2)}{2}$					(4)
	$x = \frac{y(t_1 + t_2)}{(t_2 - t_1)}$					(1)
			(1)			(1)
		f man in still v	vater = 6 km / h			
	OR .					
		5 m in 3 seco				(1)
	Time taken t	o run 200 m =	$=\frac{3}{5} \times 200$			(1)
	= 120 second					(-/
25		$v_f =$	$v_i = 216000, v_i = 2$	00000		
		11.5— 11	7. <u>-</u>			(1)
	Nomin	al Rate = $\frac{v_f - v_i}{v_i}$	$\frac{a}{2} \times 100$			
		$=\frac{1}{26}$	$\frac{6000}{00000} \times 100$			(1)
			8 %			
26	2006 - 63					(½
	2007-60.5					marks
	2008 – 56.25					for
	2009- 53.5					each
	2010- 53.5					part)
	2011- 52.5					
			OR	1		
	Year (t)	Υ	$X = t_i - 2017$	xi ²	ху	
	2015	9	-2	4	-18	
	2016	18	-1	1	-18	
	2017	21	0	0	0	
	2018	29	2	1	29	
	2019	38 115	2	10	76 69	
		<u> </u>	∇ v 115	II.	09	
		a =	$\frac{\sum y}{n} = \frac{115}{5}$	= 23		
	And $b =$	$\frac{\Sigma xy}{\Sigma x^2} = 69$	/10 = 6.9			
	$y_t = a + b x$, $y_t = 23 + 6.9 x$					
	Draw the grap)h				

27	Quantity of milk after n operation = $\frac{40(1-\frac{4}{40})^3}{100}$	(2)
	Quantity of milk after it operation = 40	(1)
	= 29.16	
28	$\int \frac{x^2}{(x-1)(x-2)(x-3)} dx$	(2)
	$= \int \left(\frac{\frac{1}{2}}{x-1} + \frac{-4}{x-2} + \frac{\frac{9}{2}}{x-3} \right) dx$	(1)
	$= \frac{1}{2} \log x - 4 \log \log x + \frac{9}{2} \log x + C$	
		OR
	OR	(1)
	$-\int_{-2}^{-1} (\chi^3 - x) dx + \int_{-1}^{0} (\chi^3 - x) dx - \int_{0}^{1} (\chi^3 - x) dx$	(1)
		(1)
	for integration	
	=11/4	
29	$t = \frac{\overline{x} - \mu}{c}$	(1)
	$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$	
	= 2.24	
	Degree of freedom =20-10=19	(1)
		(1)
	and $t_{0.05} = 1.729$ null hypothesis is rejected since $t - statistics$ more than the tabulated value	
30	Cost of house = 4500000	(1)
	Down payment = 500000	(-)
	Balance amount = 40,00000	(1)
	So, $P = 40,00000$, $i = \frac{6}{12 \times 100} = 0.005n = 25 \times 12 = 300$	(+)
	12 x100	

	I	
	EMI = $\frac{p \times i \times (1+i)^n}{(1+i)^n-1}$	
	$= \frac{4000000 \times 0.005 (1.005)^{300}}{(1.005)^{300} - 1}$	(1)
	= 25772, Hence EMI = 25772.	
31	$= \frac{R((1+i)^n - 1)}{i} \text{here } i = \frac{5}{200} = 0.025$	(1)
31	$R = \frac{AXi}{(1+i)^n - 1}$	(2)
	R = 39148	
32	Probability of defective buckets = 0.05	
	n = 100	
	m = np = 5	(1)
	Let X = number of defective buckets in a sample of 100	
	$p(X = r) = \frac{e^{-m}m^r}{r!}$, r= 0,1,2,3,	
	(i) P(No of defective buckets) = p(r=0)	
	$= \frac{e^{-5}5^0}{0!} = e^{-5} = 0.0067$	(2)
	(ii) P(At most one defective buckets) = P(r=0,1)	
	$= \frac{e^{-5}5^0}{0!} + \frac{e^{-5}5^1}{1!} = 0.0067 + 0.0335$ $= 0.0402$	(2)
	OR	

	X=scores of students, μ =45, σ =5,	(1)
	V	(2)
	$Z = \frac{X - \mu}{\sigma} = (X - 45)/5$	(2)
		(2)
	(i) When $X = 45, Z = 0$	
	P (X>45)=P(Z>0) =0.5	
	⇒50% students scored more than the mean score (
	(ii) When $X = 30$, $Z = -3$ and when $X = 50$, $Z = 1$	
	P (30 <x<50)=p(-3<z<1)=p(-3< td="" z≤1)<=""><td></td></x<50)=p(-3<z<1)=p(-3<>	
	$= P(-3 < Z \le 0) + P(0 \le Z < 1)$	
	$= P(0 \le Z < 3) + P(0 \le Z < 1)$	
	= 0.4987 +0.3413= 0.84	
	⇒84% students scored more than the mean score	
33	Let x be the number of guests for the booking	
	Clearly,x>100to avail discount	
	Profit P = $[4800 - \frac{200(x-100)}{10}]x = 6800x - 20x^2$	
		(1)
	$\frac{dp}{dx} = 6800 - 40 x$	
	$\frac{dp}{dx} = 0 \text{ , get } x = 170 \tag{1}$	(1)
	$\frac{d^2p}{d^2x} = -40 < 0$ (1)	

	A booking for 170 guests will maximise the profit of	
	the company And, Profit= $P = [4800 - \frac{200(x-100)}{10}]x$	
	, put x= 170 we get	(1)
		(1)
	Profit = ₹5,78,000	(1)
	OR	
	P(x) = R(x) - C(x)	(1)
	$= 5x - (100 + 0.025x^2)$	
	$\Rightarrow P'(x)=5-0.05x$	(4)
	P'(x)=0	(1)
	⇒ <i>x</i> =100	
	AsP''(x)= $-0.05<0, \forall x$	(1)
	∴ Manufacturing 100 dolls will maximise the profit of the company	(1)
	And,	(1)
	$P(x)=5x-(100+0.025x^2)$	
	Put x= 100 we get total Profit=₹1,50,000	
34	cost of new machine =65000	(1)
	Net amount required at the end of 25 year = 62500	(1)
	$R = \frac{is}{(1+i)^n - 1}, R = \frac{0.035X62500}{(1.035)^{25} - 1} = 1604.68$	(2)
	$R = {}^{(1+i)n}-1$, $R = (1.035)^{23}-1$	(1)
	Thus rs . 1604.68 are set aside each year out of the profits.	
35	Here	
	D = -1 ,	(1)
	D1 = -11	(1)
	D2= -92	(1)
	D3= -53	(1)

	By Cramer's rule	(1)
		(1)
	$x = \frac{D1}{D} = \frac{-11}{-1} = 11$, $y = \frac{D2}{D} = \frac{-92}{-1} = 92$ $z = \frac{D3}{D} = \frac{-53}{-1} = 53$	
36	(1) Pipe C empties 1 tank in 12 hr. =	
	$\frac{2}{5}$ the tank in $\frac{2}{5}$ $x12 = \frac{24}{5}$ $hr = 4\frac{4}{5}$ hr	
	(2) Part of tank filled in 1 hour = $\frac{1}{6} + \frac{1}{8} - \frac{1}{12} = \frac{5}{24}$	(1)
	= time taken to fill tank completely = $\frac{24}{5} hr$. = $4 \frac{4}{5} hr$.	
	(3) At 5 am, Let the tank be completely filled in 't' hours	(1)
	⇒pipe A is opened for 't' hours	
	pipe B is opened for 't-3' hours	
	And, pipe C is opened for 't-4' hours	
	\Rightarrow In one hour, part of tank filled by pipe A = $\frac{t}{6}$	(2)
	part of tank filled by pipe B = $\frac{t-3}{8}$	
	And part of tank filled by pipe $C = \frac{t-4}{12}$	
	Hence	
	$\frac{t}{6} + \frac{t-3}{8} - \frac{t-4}{12} = 1$, $t = 5$	
	Total time to fill the tank -= 5 hrs.	
	OR	
	6 am, pipe C is opened to empty ½ filled tank	
	Time to empty = $\frac{24}{5}$ hours	
	Time for cleaning = 1 hour	
	Part of tank filled by pipes A and B in 1 Hour = $\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	
	Part of tank filled by pipes A and B in 1 hour=1/15+1/12+1/20=3/20 th tank	
	\Rightarrow time taken to fill the tank completely = $\frac{24}{7}$ hours	
	Total time taken in the process	

	$= \frac{24}{5} + 1 + \frac{24}{5} = \frac{323}{35} hrs = 9\frac{8}{35} hrs$	
37	equation of AD	
	2x + y = 50	(1)
	Equation of BC	
	x+2y= 40 (1)	(1)
	the co-ordinates of points B and C	
	B (20,10) and C (0,20)	(2)
	OR	
	the Constraints for the LPP.	(1)
	2x+y <=50,	(1)
	X+2y<=40,	(2)
	x>=0,y>=0.	
		ĺ