KENDRIYA VIDYALAYA SANGATHAN, MUMBAI REGION FIRST PREBOARD EXAMINATION 2019-2020 CLASS XII : MATHEMATICS-041

ANSWERS

1	b) 320	1
2	d) 2	1
3	C) 2	1
4	a) 1/3	1
5	C) (2,3)	1
6	a) $\frac{2\pi}{5}$	1
7	b) 32/95	1
8	(d) $\frac{1}{7}\sin^{-1}\frac{7x}{4} + c$	1
9	b) 5/2	1
10	C) (0,3,-1)	1
11	2	1
12	t ²	1
13	A	1
14	6cm or decreasing at rate of 72 units/sec.	1
15	$\frac{j}{\sqrt{2}} + \frac{k}{\sqrt{2}}$	1
	Or	
	$\lambda = 5$	
16	X+y dy/dx = 0 Or 6	1
17	2	1

18	a = -2/3, b=3/2	1/2 + 1/2
19	О	1
20	$e^{x}/x + C$	1
21	Getting P(B)=7/8 and P(A∩ B)=6/8	1
	Getting P(A/B) = 6/7	1
22	Subsituting in the formula and getting angle as $\pi/3$	1+1
23	Writing $\begin{pmatrix} a + \lambda b \end{pmatrix}$. $c = 0$	1
	Getting the value as 8	1
	Expanding using scalar triple product	1
	For proving	1
24	Finding C=0	1
	Finding the point as (0,0)	1`
25	Finding LHL and RHL	1
	Arriving at the conclusion that f is continuous	1
26	Writing tan ⁻¹ x + tan ⁻¹ y=π- tan ⁻¹ z and using correct formula and proving	1
	Or	1
	For proving not reflexive	
	And not transitive	1
		1
27	For proving one one	1 ½
	For proving onto	1 ½
	For finding inverse, g(y)= $\frac{\sqrt{y-6}-3}{2}$	1
28	For correct LPP	
20	TO SOLISOLE I	

	Max z=10500x+9000y	
5	s.t $x+y \le 50$, $20x + 10y \le 800$, $x \ge 0$, $y \ge 0$	2
F	For graph	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		1
	Solution, x=30, y=20 and max profit =Rs. 495000	
		1
29 (Cosine formula, limits,getting a=±2	1+2+1
	OR Proper substitution,calculation,correct form of answer	1+2+1
30 /	Writing in the form $\frac{dy}{dx}$ + Py = Q	1
	Getting I.F as cosec ³ x	1
	Getting the solution as y= -2sin ² x+Csin ³ x	2
		4
	Putting x ²⁼ y and rewriting the integrand	1
	Applying partial fractions and getting the constants as -4/5	
	And 9/5	2
	Getting final answer as -2/5 tan ⁻¹ x/2 + 3/5 tan ⁻¹ x/3 +C	1

32	Writing values of X as 0,1,2,3					1/2		
	Getting the table as follows:							
	X	0	1	2	3			
	P(X)	27/64	27/64	9/64	1/64		2 ½	
	Getting me	ean as ¾					1	
	OR							
		Defining E1: guesses the answer, E2: copies, E3: knows the answer, A:						
	answered	-	D/E0\ 1/				1	
		s, P(E2)=1/6,	,				1/2	
		I/4, P(A/E2)=	,				1	
	Applying Bayes theorem and getting the answer,							
	P(E2/A)=1/29						1 ½	
3	Dividing R1,R2,R3 BY x,y,z res.					1		
	Multiplying C1,C2,C3 BY x, y, z respectively					1		
	$\Rightarrow xyz \begin{vmatrix} (x+y)^2 \\ x \end{vmatrix}$ $= \begin{vmatrix} (y+z)^2 - \\ 0 \\ x^2 \end{vmatrix}$	$\frac{(x+z)^2}{y}$ $y \qquad \frac{(}{}$	$\begin{vmatrix} z \\ z \\ \frac{x+y)^2}{z} \end{vmatrix} \Rightarrow \begin{vmatrix} (x+y)^2 \\ x^2 \\ z^2 - (x+y)^2 \\ (x+y)^2 \end{vmatrix}$	$y)^{2} \qquad y^{2}$ $(x+z)^{2}$ y^{2} $\Rightarrow (x+y+z)^{2}$	$\begin{vmatrix} z^2 \\ z^2 \\ (x+y)^2 \end{vmatrix} R_1 \longrightarrow R_1 - R_2$ $\begin{vmatrix} y+z-x & 0 \\ 0 & x+z-y \\ x^2 & y^2 \end{vmatrix}$	$R_3, R_2 \longrightarrow R_2 - R_3$ $z - x - y$ $z - x - y$ $(x + y)^2$		
							2	

	after applying the operation	2
	$= 2(x + y + z)^{2}[\{(y + x - x)(0 + xy^{2})\} - 0 + x(y + z)\{0 + y(x + z - y)\}], = 2xyz(x + y + z)^{3}$	
34	Drawing the figure and getting point of intersection $(\frac{1}{2}, \frac{\sqrt{3}}{2})$,	2
	Area = $2(\int_0^{\frac{1}{2}} \sqrt{1 - (x-1)^2} dx + \int_{\frac{1}{2}}^1 \sqrt{1 - x^2} dx)$	2
	$=2\left(\left\{\frac{x-1}{2}\sqrt{1-(x-1)^2}+\frac{1}{2}\sin^{-1}\frac{x-1}{1}\right\}+\left\{\left\{\frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}\sin^{-1}\frac{x}{1}\right\}\right)$	
	$=2\left(\frac{-1}{4}\frac{\sqrt{3}}{2}-\frac{1}{2}\sin^{-1}\frac{1}{2}+\frac{1}{2}\sin^{-1}1+\frac{1}{2}\sin^{-1}1-\frac{1}{4}\frac{\sqrt{3}}{2}-\frac{1}{2}\sin^{-1}\frac{1}{2}\right)$	2
	$= \frac{2\pi}{3} - \frac{\sqrt{3}}{2} \text{ sq units}$	
35	Let V denotes the volume of the cone of radius r and Height h	
	inscribed in a sphere of radius R	1/2
	$\Rightarrow V = \frac{1}{3}\pi r^2 h \dots (1)$	
	For correct figure	1
	Clearly R ² =r ² +(h-R) ²	
	r^2 =2hR-h ²	
	substituting in eq(1) we get	1/2
	V=1/3 π (2h ² R-h ³)(2)	
	$\frac{dv}{dh} = 1/3 \pi (4hR - 3h^2) from \frac{dv}{dh} = 0 h = \frac{4R}{3}$	1
	also $\frac{d^2v}{dh^2} = 1/3 \pi (4R-6h)$	
	$\frac{d^2v}{dh^2}$ } at $h = \frac{4R}{3} = -4\pi R/3 < 0$	1+1

	Therefore V has maximum when $h = \frac{4R}{3}$ in Eqn(2)		1
	We get V=8/27 Volume of a sphere		
	Or		
	Total surface area of half cylinder is $S=2\left(\frac{1}{2}\pi r^2\right)+\pi rh+2rh(2)$ From (1) put the value of h in (2) $S=(\pi r^2)+\pi r\left(\frac{2V}{\pi r^2}\right)+2r\left(\frac{2V}{\pi r^2}\right)$ $S=(\pi r^2)+\left(\frac{1}{r}\right)\left[\frac{4V}{\pi}+2V\right]$ $\frac{ds}{dr}=(2\pi r)+\left(\frac{-1}{r^2}\right)\left[\frac{4V}{\pi}+2V\right](3)$ For maxima/minima $\frac{ds}{dr}=0$ $\Rightarrow (2\pi r)+\left(\frac{-1}{r^2}\right)\left[\frac{4V}{\pi}+2V\right]=0$ $\Rightarrow (2\pi r)=\left(\frac{1}{r^2}\right)\left[\frac{4V+2V\pi}{\pi}\right]$ $\Rightarrow \pi r^3=V\left[\frac{2+\pi}{\pi}\right]$ $\Rightarrow \pi r^3=V\left[\frac{2+\pi}{\pi}\right]$ $\Rightarrow V=\frac{\pi^2 r^3}{\pi+2}(4)$ From (1) and (4) $\Rightarrow \frac{1}{2}\pi r^2h=\frac{\pi^2 r^3}{\pi+2}$ $\Rightarrow \frac{h}{2r}=\frac{\pi^2 r^3}{\pi+2}$ $\Rightarrow height: diameter=\pi;\pi+2$ Differentiating (3) with respect to r $\frac{d^2s}{dr^2}=(2\pi)+\left(\frac{2}{r^2}\right)\left[\frac{3r}{\pi}+2V\right]=\text{positive (as all quantities are +ve)}$ so S is minimum when $height: diameter=\pi;\pi+2$	1	
36	Writing eqn. of plane,		1
	using condition of perpendicularity, getting $\lambda = \frac{-1}{3}$,		1
	getting eqn. of plane by putting value of λ		2
	x-z+2=0 ,		
	finding distance = $\sqrt{2}$ units		1