PRE-BOARD EXAM 2023-24 CLASS: XII MATHEMATICS

	TIME: 3 hrs.	MARKING SCHEME	Max Marks: 80	
QUESTION NUMBER	ANSWER/SOLUTION			MARKS
1	с			1
2	с			1
3	b			1
4	b			1
5	с			1
6	d			1
7	c			1
8	d			1
9	a			1
10	c			1
11	a			1
12	d			1
13.	a			1
14	b			1
15	a			1
16	d			1
17	a			1
18	a			1
19	a			1
20	с			1
21	$\cos^{-1}\left(\cos\left(\frac{7\pi}{6}\right)\right) = \cos^{-1}$	$\left(\cos\left(2\pi - \frac{5\pi}{6}\right)\right)$		1
	$=\cos^{-1}\left(\cos\left(\frac{5\pi}{6}\right)\right)=\frac{5\pi}{6}$			1
22	$A = \pi r^2$			1/2 1/
	$dA/dr = 2\pi r$ at r = 6 dA / dr = 12 π cm ²	² /cm		1
	$f'(\mathbf{x}) = 3\mathbf{x}^2 - 6\mathbf{x} + 4$	OR		1
	1 (A) = JA = 0A + 4			

	$= 3(x-1)^2 + 1 > 0$, in every interval of R.	1
	Therefore, the function f is increasing on R.	
23	$2x + 3y = \sin y.$	
	$2 + 3 dy/dx = \cos y dy/dx$	1
	$dy/dx = 2/(\cos y - 3)$	1
24	$\frac{2}{2} - \frac{-3}{4} - \frac{4}{4}$	1
	a 6 -8	
	a= -4	1
	OR	
	$a^{\rightarrow} + b^{-} = 6 \iota - 2j + (7 + \lambda)k^{\wedge}$ and $a^{\rightarrow} - b^{-} = -4\iota + (7 - \lambda)k^{\wedge}$	1
	$\vec{a} + \vec{b} and \vec{a} - \vec{b}$ will be orthogonal if, $(\vec{a} + \vec{b})$. $(\vec{a} - \vec{b}) = 0$	1
	i.e., if, $-24 + (49 - \lambda^2) = 0 \Longrightarrow \lambda^2 = 25$	1
	i.e., if, $\lambda = \pm 5$	
25	Direction of the new ined line Direction of since line	
25	Direction of the required line = Direction of given line \rightarrow \wedge \wedge	
	b = 2i - 5j + 3k	1
	$\vec{r} = \vec{a} + \lambda \vec{b}$	1
	Required equation of line	
	$\vec{r} = (-2\hat{i} + 4\hat{j} - 5\hat{k}) + \lambda(2\hat{i} - 5\hat{j} + 3\hat{k})$	1
26	$\frac{x^2 + x + 1}{x^2 + x + 1} = \frac{A}{x^2 + x^2 + x^2} + \frac{Bx + C}{x^2 + x^2}$	
	$(x+2)(x^{2}+1)$ $(x+2)$ $(x^{2}+1)$	1
	Solving A = $3/5$, B = $2/5$, C = $1/5$	1
	$\int \frac{x + x + 1}{(x + 2)(x^2 + 1)} dx = \frac{3}{5} \int \frac{dx}{(x + 2)} + \frac{1}{5} \int \frac{2x dx}{(x^2 + 1)} + \frac{1}{5} \int \frac{dx}{(x^2 + 1)}$	1
	$= \frac{3}{2} \log x + 2 + \frac{1}{2} \log (x^2 + 1) + \frac{1}{2} \tan x + 2$	1
	$\left -\frac{1}{5} \log x+2 + \frac{1}{5} \log (x+1) + \frac{1}{5} \tan x + c \right $	-
27	Putting $U = x^{\cos x}$ and $V = (\cos x)^{\sin x}$	
	$dU = r^{\cos x} \left(\cos x \sin r \log r \right)$	1
	Finding $\frac{dx}{dx} = x$ $\left(\frac{dx}{dx} - \sin x \log x\right)$	1
	dV	1
	$\frac{dv}{dx} = (\cos x)^{\sin x} (\cos x \log \cos x - \sin x \tan x)$	
	Finding <i>ax</i>	1
	$\frac{dy}{dx}$	
	Writing the value of dx	
	OR	1.5
	$2 \tan^{-1} x$	15
	Finding $y_1 = \frac{1}{1+x^2} \Rightarrow (1+x^2) y_1 = 2 \tan^{-1}x$	1.3
	Again differentiating & obtaining the result	
28	Cotting $dy = 2xy-y^2$	
	$\frac{dx}{dx} = \frac{1}{2x^2}$	1
	This is a homogeneous diff. eq.	
	So let $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$	1
	Putting in (i) and getting $-\frac{2}{2}dv = \frac{1}{2}dx$	1

$$\begin{bmatrix} \operatorname{Integrating we get} - \left(-\frac{2}{v}\right) = \log \log |x| + c \\ \operatorname{Putting} \frac{2x}{y} = \log \log |x| + c \text{ is the required solution} \\ OR \\ \frac{dy}{dx} + ysec^{2}x = \frac{tanx}{co^{2}x} \\ L.P = e^{ax} \\ ye^{tanx} = \int L.e^{t}dt + c \quad put = tanx \\ y = (tanx - 1) + ce^{-tanx} \\ 1 \\ 1 \\ \frac{29}{29} \\ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \frac{dx}{dx} \quad ...(1) \\ \Rightarrow I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin (\frac{\pi}{2} - x)}}{\sqrt{\sin (\frac{\pi}{2} - x)}} \frac{dx}{\sqrt{\cos x} + \sqrt{\cos (\frac{\pi}{2} - x)}} \\ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\cos (\frac{\pi}{2} - x)}} dx \\ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\cos (\frac{\pi}{2} - x)}} dx \\ 2I = \int_{0}^{\frac{\pi}{2}} \left(\frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}}\right) dx \\ 2I = \int_{0}^{\frac{\pi}{2}} \left(\frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}}\right) dx = 2I = \int_{0}^{\frac{\pi}{2}} I dx \quad 2I = [x]_{0}^{\frac{\pi}{2}} \Rightarrow I = \frac{\pi}{4} \\ I \\ OR \\ Writing I = \frac{\frac{5}{2}}{\sqrt{25 - 16 + 16 \sin 2x}} \frac{dx}{dx} \\ I \\ Taking I 6 common & putting 1 - \sin 2x - (\cos x)2. \\ Substitution of sin x - cos x = 1 & limit changc \\ Integrating & getting the result \\ \frac{1}{40} \log 9 \\ I \\ 1 \\ 30. \\ Maximize Z = 17.5x + 7y ...(1) subject to the constraints, \\ x + 3y \le 12 ...(2) & x + y \le 12 ...(3) x, y \ge 0 \\ 0...(4) \\ The feasible region determined by the system of constraints is as follows. \\ \end{bmatrix}$$

	$\begin{array}{c} Y \\ 13 \\ 12 \\ (0, 12) \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ C \\ (0, 4) \\ 8 \\ 7 \\ 6 \\ 5 \\ C \\ (0, 4) \\ 8 \\ 7 \\ 6 \\ 5 \\ C \\ (0, 4) \\ 8 \\ 7 \\ 6 \\ 5 \\ C \\ (0, 4) \\ 8 \\ 7 \\ 6 \\ 7 \\ 3x + y = 12 \end{array}$ The corner points an	$(12,0) \times (12,0) \times ($	and C (0, 4). The v	values of Z at these	
	Corner	$\mathbf{Z} = 17.5\mathbf{x} + \mathbf{\overline{z}}$]	1.5
	point	/ y			
	O(0, 0)	0			
	A(4, 0)	70			0.5
	B(3, 3)	73.5	→ Maximum		
	C(0, 4)	28]	
	The maximum value	e of Z is 73.50 at (3,	3).	-	
31	$A=\{(1, 6), (6, 1), (2, 5) \\ B=\{(1, 2), (2, 1), (2, 2), (2, 3) \\ A^{\cap}B = (5, 2), (2, 5) \\ P(A/B)=\frac{2}{11}$), (5, 2), (3, 4), (4, 3)} 3),(3,2),(4,2),(2,4),(5,2),	(2,5),(6,2),(2,6)}		1 1 1
32	Reflexive : $ a - a = 0$ $\therefore (a, a) \in R, \forall a \in A \therefore \mathbb{R}$ Symmetric : Let (a, b) $\Rightarrow a - b $ is divisible b $\Rightarrow b - a $ is divisible b $\Rightarrow (b, a) \in R \therefore \mathbb{R}$ is symmetric	b), which is divisible by 4 is reflexive ϵR by 4 by 4 (:: $ a - b = b - b $ metric	l, ∀ a ∈ A a)		1.5
	Transitive :Let (a, b) , $\Rightarrow a - b \& b - c $ are Adding we get, $a - c =$	$(b, c) \in R$ e divisible by 4 $\Rightarrow a - b = \pm 4m,$ = 4 $(\pm m \pm n)$	$b-c=\pm 4n,\ m,n$	$\in Z$	1.5
	$\Rightarrow a - c $ is divisible b \therefore R is transitive	by 4 ∴(a, c)∈ R			2
			OR		
					1
					1.5
					1.5
					1.5

	R = {(L_1, L_2): L ₁ is parallel to L_2 } R is reflexive as any line L_1 is parallel to itself i.e., (L_1, L_1) ∈ R. Now, let (L_1, L_2) ∈ R. ⇒ L_1 is parallel to L_2 ⇒ L_2 is parallel to L_1 . ⇒ (L_2, L_1) ∈ R \therefore R is symmetric. Now, let (L_1, L_2), (L_2, L_3) ∈ R. ⇒ L_1 is parallel to L_2 . Also, L_2 is parallel to L_3 . ⇒ L_1 is parallel to L_3 .	1
	∴ R is transitive. Hence, R is an equivalence relation. The set of all lines related to the line $y = 2x + 4$ is the set of all lines that are parallel to the line $y = 2x + 4$. Slope of line $y = 2x + 4$ is $m = 2$ It is known that parallel lines have the same slopes.	
	The line parallel to the given line is of the form $y = 2x + c$, where $c \in \mathbf{R}$. Hence, the set of all lines related to the given line is given by $y = 2x + c$, where $c \in \mathbf{R}$.	
33	Finding AB = 8 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 8I$	1.5
	$P^{-1}C = \frac{1}{2}AC$	1.5
	Writing given system as $BX = C$ so that $X = B$ $C = 8$ Putting values and getting sol as $x = 3$, $y=-2$, $z=-1$	2
34	$y = x^2$ and $y = x $	2
	$\begin{array}{c} Y \\ \uparrow \end{array} \begin{array}{c} y = x^2 \\ y = [x] \end{array}$	
	$X \xleftarrow{D_{\Gamma_i}} X'$	
	\downarrow	2
	Required area =2{area of OACO – area of ODACO}	1
	$\int r dr = \int r^2 dr$	2
	$\int_{0}^{3} \frac{1}{2} \frac{1}{3} $	
	OR	
	The line $y = 3x + 2$ meets x-axis at $x = -2/3$ and its graph lies below x-axis for x	2
	$\in \left(-1, \frac{-2}{3}\right)$ and above x-axis for $x \in \left(\frac{-2}{3}, 1\right)$	2
	The required area = Area of the region ACBA + Area of the region ADEA $\frac{1}{2}$	1
	$= \int_{-1}^{3} (3x + 2) dx + \int_{-\frac{2}{3}}^{1} (3x + 2) dx$	2
	= 1/6 + 25/6 = 13/3 sq units	
35	Let $P(1, 6, 3)$ be the given point, and let 'L' be the foot of the perpendicular from '	
	P' to the given line AB (as shown in the figure below). The coordinates of a	
	general point on the given line are given by $_{P(1,6,3)}$	
	A B L	
	lo	

	$ x - 0 = y - 1 = z - 2 = \lambda, $ $ 1 \qquad 2 \qquad 3 $	1
	λ is a scalar, i.e., $x = \lambda$, $y = 2 \lambda + 1$ and $z = 3 \lambda + 2$	
	Let the coordinates of <i>L</i> be $(\lambda, 2 \lambda + 1, 3 \lambda + 2)$.	
	So, direction ratios of <i>PL</i> are λ -1, 2 λ + 1 - 6 and 3 λ + 2 - 3, <i>i.e.</i> λ -1, 2 λ -5 and 3 λ -1.	
	Direction ratios of the given line are 1, 2 and 3, which is perpendicular to	1
	PL.	
	Therefore, $(\lambda - 1)1 + (2 \ \lambda - 5)2 + (3 \ \lambda - 1)3 = 0 \implies 14 \ \lambda - 14 = 0 \implies \lambda = 1$	
	So, coordinates of <i>L</i> are (1, 3, 5).	
	Let $Q(x_1, y_1, z_1)$ be the image of $P(1, 6, 3)$ in the given line. Then, L is the mid-point	1
	of	1
	PQ.	1
	(x_1+1) (y_1+6) (z_1+3) Therefore. = 1, = 3 and = 5	1
	$2 2 2 2 2 2 2 = x_1 = 1, y_1 = 0 \text{ and } z_1 = 7$	
	Hence, the image of $P(1,6,3)$ in the given line is $(1,0,7)$.	
	Now, the distance of the point (1,0,7) from the y - axis is $\sqrt[7]{1^2 + 7^2} = \sqrt{50}$ units.	
36	(i) $x = 2\pi r$	1.5
	$r = x/2\pi$ m. (ii) The length of the wire will be needed to fence the squared garden =	1.5
	$112/(4+\pi)$ m	2.5
37	(i) x=4	2.5
51	(ii) Maximum height=8cm	1
	(iii) Height after 2 days=6cm	2
	x=1	-

38.	A: he will come by cab B: he will come by metro	
	C: he will come by bike D: he will come by other means	
	E: HE arrives late	
	P(A) = 0.3, P(B) = 0.2, P(C) = 0.1, P(D) = 0.4	
	P(E/A) = 0.25, P(E/B) = 0.3 P(E/C) = 0.35, P(E/D) = 0.1	1
	i)P(B/E) = $\frac{0.2 \times 0.3}{0.3 \times 0.25 + 0.2 \times 0.3 + 0.1 \times 0.35 + 0.4 \times 0.1}$ = $\frac{6}{21}$ = 2/7	1.5
	ii) P(D/E) = $\frac{0.4 \times 0.1}{0.3 \times 0.25 + 0.2 \times 0.3 + 0.1 \times 0.35 + 0.4 \times 0.1} = \frac{4}{21}$	1.5