Reg No :....

## ALL KERALA COMMON MODEL EXAMINATION 2023 - 24 MATHEMATICS [041]

## Time Allowed : 180 mins

Maximum Marks: 80

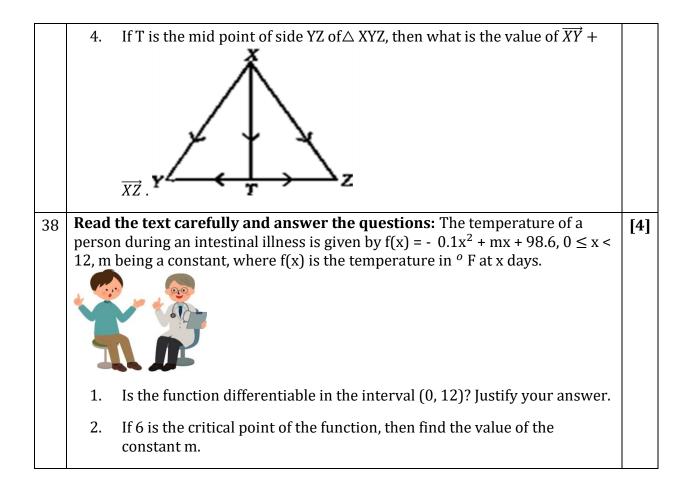
## **General Instructions:**

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA) type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

|   | Section A                                                                                                                                          |     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1 | If $\begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix}$ , then the value of x, y is | [1] |
|   | a) x = 3, y = 1                                                                                                                                    |     |
|   | b) x = 2, y = 3                                                                                                                                    |     |
|   | c) x = 2, y = 4                                                                                                                                    |     |
|   | d) x = 3, y = 3                                                                                                                                    |     |
| 2 | The value of the determinant $\begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$ is                                             | [1] |
|   | a) 0                                                                                                                                               |     |
|   | b) a                                                                                                                                               |     |
|   | c) - a                                                                                                                                             |     |
|   | d) b                                                                                                                                               |     |

| 3 | If A is singular then A(adj A) = ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1] |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | a) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|   | b) A null matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|   | c) A unit matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|   | d) A symmetric matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 4 | If $x^y = y^x$ , find $\frac{dy}{dx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [1] |
|   | a) x log x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|   | b) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|   | c) $\frac{y}{x} \cdot \left(\frac{x \log y - y}{y \log x - x}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|   | d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 5 | The straight line $\frac{x-3}{3} = \frac{y-2}{1} = \frac{z-1}{0}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [1] |
|   | a) perpendicular to z - axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|   | b) parallel to z - axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|   | c) parallel to y - axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|   | d) parallel to x - axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 6 | Find the equation of a curve passing through the point $(0, 0)$ and whose differential equation is y' = $e^x \sin x$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1] |
|   | a) $2y + 1 = e^x(sin2x - cosx)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|   | b) $2y - 1 = (\sin x - \cos x)e^x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|   | c) $3y - 1 = e^x(sinx - cos2x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|   | d) $4y - 1 = e^x(sinx - cos2x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 7 | The maximum value of $Z = 0.7x + y$ for feasible region given below is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1] |
|   | (0, 40) (30, 20) (30, 20) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (40, 0) (4 |     |

|    | a) 40                                                                                                                                                       |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | b) 50                                                                                                                                                       |     |
|    | c) 41                                                                                                                                                       |     |
|    | d) 45                                                                                                                                                       |     |
| 8  | A unit vector perpendicular to both $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is                                                                          | [1] |
|    | a) $\frac{1}{\sqrt{3}} \left( \hat{\iota} - \hat{j} + \hat{k} \right)$                                                                                      |     |
|    | b) $\hat{\imath} + \hat{\jmath} + \hat{k}$                                                                                                                  |     |
|    | c) $\hat{\imath} - \hat{\jmath} + \hat{k}$                                                                                                                  |     |
|    | b) $\hat{\imath} + \hat{\jmath} + \hat{k}$<br>c) $\hat{\imath} - \hat{\jmath} + \hat{k}$<br>d) $\frac{1}{\sqrt{3}} (\hat{\imath} + \hat{\jmath} + \hat{k})$ |     |
| 9  | $\int_{-1}^{1} \log \left( x + \sqrt{x^2 + 1} \right) dx = ?$                                                                                               | [1] |
|    | a) 0                                                                                                                                                        |     |
|    | b) $\log \frac{1}{2}$                                                                                                                                       |     |
|    | c) log 2                                                                                                                                                    |     |
|    | d) $\frac{1}{2}\log 2$                                                                                                                                      |     |
| 10 | If $A = \begin{bmatrix} 2 & -1 & 3 \\ -4 & 5 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 4 & -2 \\ 1 & 5 \end{bmatrix}$ then                       | [1] |
|    | a) only BA is defined                                                                                                                                       |     |
|    | b) only AB is defined                                                                                                                                       |     |
|    | c) AB and BA both are not defined                                                                                                                           |     |
|    | d) AB and BA both are defined                                                                                                                               |     |
| 11 | The point at which the maximum value of x + y, subject to the constraints x + $2y \le 70$ , $2x + y \le 95$ , x, $y \ge 0$ is obtained, is                  | [1] |
|    | a) (20, 35)                                                                                                                                                 |     |
|    | b) (30, 25)                                                                                                                                                 |     |
|    | c) (35, 20)                                                                                                                                                 |     |


|    | d) (40,15)                                                                                                                                                                                                                                                                          |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 12 | Find a vector in the direction of vector $5\hat{i} - \hat{j} + 2\hat{k}$ which has a magnitude of 8 units.                                                                                                                                                                          | [1] |
|    | a) $\frac{40}{\sqrt{30}}\hat{i} + \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$                                                                                                                                                                                         |     |
|    | b) $-\frac{40}{\sqrt{30}}\hat{\imath} - \frac{8}{\sqrt{30}}\hat{\jmath} + \frac{16}{\sqrt{30}}\hat{k}$                                                                                                                                                                              |     |
|    | c) $\frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$                                                                                                                                                                                         |     |
|    | d) $\frac{40}{\sqrt{30}}\hat{\iota} - \frac{8}{\sqrt{30}}\hat{j} - \frac{16}{\sqrt{30}}\hat{k}$                                                                                                                                                                                     |     |
| 13 | Let $\begin{vmatrix} x^2 + x & 2x - 1 & x + 3 \\ 3x + 1 & 2 + x^2 & x^3 - 3 \\ x - 3 & x^2 + 4 & 2x \end{vmatrix}$ = px <sup>7</sup> + qx <sup>6</sup> + rx <sup>5</sup> + sx <sup>4</sup> + tx <sup>3</sup> + ux <sup>2</sup> + vx + w<br>then which of the following is not true? | [1] |
|    | a) w = 21, v = 75                                                                                                                                                                                                                                                                   |     |
|    | b) p = - 1, t = 8                                                                                                                                                                                                                                                                   |     |
|    | c) $p = q = -1$                                                                                                                                                                                                                                                                     |     |
|    | d) q = 0, s = - 4                                                                                                                                                                                                                                                                   |     |
| 14 | Number X is randomly selected from the set of odd numbers and Y is randomly selected from the set of even numbers of the set $\{1, 2, 3, 4, 5, 6, 7\}$ . Let Z = (X + Y).What is P (Z = 10) equal to?                                                                               | [1] |
|    | a) $\frac{1}{3}$                                                                                                                                                                                                                                                                    |     |
|    | b) $\frac{1}{2}$                                                                                                                                                                                                                                                                    |     |
|    | c) $\frac{1}{5}$                                                                                                                                                                                                                                                                    |     |
|    | d) 0                                                                                                                                                                                                                                                                                |     |
| 15 | A first order linear differential equation, is a differential equation of the form                                                                                                                                                                                                  | [1] |
|    | a) $\frac{dy}{dx} + Py = Q$                                                                                                                                                                                                                                                         |     |
|    | a) $\frac{dy}{dx} + Py = Q$<br>b) $\frac{dy}{dx} + Px = Q$<br>c) $\frac{dy}{dx} + Py = 0$                                                                                                                                                                                           |     |
|    | c) $\frac{dy}{dx} + Py = 0$                                                                                                                                                                                                                                                         |     |

|    | da                                                                                                                                                                                                      |     |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|    | d) $\frac{dy}{dx} = Q$                                                                                                                                                                                  |     |  |
| 16 | Let $\vec{a}$ , $\vec{b}$ , $\vec{c}$ be three unit vectors such that $ \vec{a} + \vec{b} + \vec{c}  = 1$ and $\vec{a}$ is perpendicular                                                                | [1] |  |
|    | to $\vec{b}$ . If $\vec{c}$ makes angle $\alpha$ and $\beta$ with $\vec{a}$ and $\vec{b}$ respectively, then $\cos \alpha + \cos \beta =$                                                               |     |  |
|    | a) - 1                                                                                                                                                                                                  |     |  |
|    | b) $\frac{3}{2}$                                                                                                                                                                                        |     |  |
|    | c) $-\frac{3}{2}$                                                                                                                                                                                       |     |  |
|    | d) 1                                                                                                                                                                                                    |     |  |
| 17 | Let $f(x) = \begin{cases} \left  \tan\left(\frac{\pi}{4} + x\right) \right _{x}^{\frac{1}{x}} & x \neq 0 \\ k, & x = 0 \end{cases}$ then the value of k such that $f(x)$ holds continuity at $x = 0$ is | [1] |  |
|    | a) $e^2$                                                                                                                                                                                                |     |  |
|    |                                                                                                                                                                                                         |     |  |
|    | b) $\frac{1}{e^2}$                                                                                                                                                                                      |     |  |
|    | c) e                                                                                                                                                                                                    |     |  |
|    | d) None of these                                                                                                                                                                                        |     |  |
| 18 | Find the shortest distance between the lines $\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$<br>and $\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$                                    | [1] |  |
|    | a) $\frac{8}{\sqrt{31}}$                                                                                                                                                                                |     |  |
|    | b) $\frac{8}{\sqrt{35}}$                                                                                                                                                                                |     |  |
|    | c) $\frac{8}{\sqrt{29}}$                                                                                                                                                                                |     |  |
|    | d) $\frac{8}{\sqrt{33}}$                                                                                                                                                                                |     |  |
| 19 | <b>Assertion (A):</b> The function $f(x) = \sin x$ decreases on the interval $(0, \frac{\pi}{2})$ .                                                                                                     | [1] |  |
|    | <b>Reason (R):</b> The function $f(x) = \cos x$ decreases on the interval $(0, \frac{\pi}{2})$ .                                                                                                        |     |  |
|    | a) Both A and R are true and R is the correct explanation of A.                                                                                                                                         |     |  |
|    | b) Both A and R are true but R is not the correct explanation of A.                                                                                                                                     |     |  |
|    | c) A is true but R is false.                                                                                                                                                                            |     |  |
| L  |                                                                                                                                                                                                         | 1   |  |

|    | d) A is false but R is true.                                                                                                                                                                                            |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 20 | <b>Assertion (A):</b> A function f: $Z \rightarrow Z$ defined as $f(x) = x^3$ is injective. <b>Reason (R):</b> A function f: $A \rightarrow B$ is said to be injective if every element of B has a pre - Image in A.    | [1] |
|    | a) Both A and R are true and R is the correct explanation of A.                                                                                                                                                         |     |
|    | b) Both A and R are true but R is not the correct explanation of A.                                                                                                                                                     |     |
|    | c) A is true but R is false.                                                                                                                                                                                            |     |
|    | d) A is false but R is true.                                                                                                                                                                                            |     |
|    | Section B                                                                                                                                                                                                               |     |
| 21 | Evaluate:sin <sup>-1</sup> (sin( - 600°))                                                                                                                                                                               | [2] |
|    | OR                                                                                                                                                                                                                      |     |
|    | For the principal value, evaluatecot[sin <sup>-1</sup> {cos(tan <sup>-1</sup> 1)}]                                                                                                                                      |     |
| 22 | Prove that the function $f(x) = x^3 - 6x^2 + 12x - 18$ is increasing on R.                                                                                                                                              | [2] |
| 23 | Find the points of local maxima or local minima and corresponding local maximum and local minimum values of the function. Also, find the points of inflection, if any: $f(x) = x + \frac{a^2}{x}$ , $a > 0, x \neq 0$ . | [2] |
|    | OR                                                                                                                                                                                                                      |     |
|    | A particle moves along the curve $y = x^2 + 2x$ . At what point(s) on the curve are the x and y coordinates of the particle changing at the same rate?                                                                  |     |
| 24 | Evaluate $\int \frac{e^{\log \sqrt{x}}}{x} dx$                                                                                                                                                                          | [2] |
| 25 | Find the maximum and minimum values of $f(x) = (-x + 2\sin x)$ on                                                                                                                                                       | [2] |
|    | [0, 2 <i>π</i> ].                                                                                                                                                                                                       |     |
|    | Section C                                                                                                                                                                                                               |     |
| 26 | Evaluate the definite integral: $\int_{1}^{2} \frac{1}{\sqrt{(x-1)(2-x)}} dx$                                                                                                                                           | [3] |
| 27 | A card from a pack of 52 cards is lost. From the remaining cards of the pack,<br>two cards are drawn and are found to be both diamonds. Find the probability<br>of the lost card being a diamond.                       | [3] |
| 28 | Evaluate the integral: $\int \frac{(x-1)^2}{x^4+x^2+1} dx$                                                                                                                                                              | [3] |
|    | OR                                                                                                                                                                                                                      |     |

|    | Evaluate: $\int_0^{\pi/2} \frac{dx}{(\cos x + 2\sin x)}$                                                                                                                                                                    |     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 29 | Find the general solution of the differential equation: $(x+y)\frac{dy}{dx} = 1$                                                                                                                                            | [3] |
|    | OR                                                                                                                                                                                                                          |     |
|    | Solve the differential equation: $(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x$                                                                                                                                              |     |
| 30 | Solve the Linear Programming Problem<br>graphically:Maximize Z = $3x + 5y$<br>Subject to $x + 2y \le 20 x + y \le 15 y \le 5 x$ , $y \ge 0$                                                                                 | [3] |
|    | OR                                                                                                                                                                                                                          |     |
|    | Solved the linear programming problem graphically:Maximize Z = $60x + 15y$<br>Subject to constraints x + y $\leq 50$ 3x + y $\leq 90$ x, y $\geq 0$                                                                         |     |
| 31 | If x = a (1 - $\cos\theta$ ), y = a ( $\theta$ + $\sin\theta$ ) prove that $\frac{d^2y}{dx^2} = -\frac{1}{a}$ at $\theta = \frac{\pi}{2}$                                                                                   | [3] |
|    | Section D                                                                                                                                                                                                                   |     |
| 32 | Sketch the graph of y = $ x + 3 $ and evaluate $\int_{-6}^{0}  x + 3  dx$                                                                                                                                                   | [5] |
| 33 | Let A be the set of all human beings in a town at a particular time. Determine whether each of the following relations are reflexive, symmetric and transitive:                                                             | [5] |
|    | 1. R = {(x, y): x and y work at the same place}                                                                                                                                                                             |     |
|    | 2. R = {(x, y): x and y live in the same locality}                                                                                                                                                                          |     |
|    | OR                                                                                                                                                                                                                          |     |
|    | Let R be a relation on $N \times N$ , defined by (a, b) R (c, d) $\Leftrightarrow$ a + d = b + c for all (a, b), (c, d) $\in N \times N$ . Show that R is an equivalence relation.                                          |     |
| 34 | If $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 1 & - & 1 \end{bmatrix}$ , then find $A^{-1}$ and hence solve the system of equations<br>x+ 2y+z= 4<br>-x+y+z=0<br>and x- 3y + z = 4.                                    | [5] |
| 35 | Find the perpendicular distance of the point (1, 0, 0) from the $line \frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ . Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular. | [5] |
|    | OR                                                                                                                                                                                                                          |     |

|    | al + br          | that the straight lines whose direction cosines are given by the equations<br>$m + cn = 0$ and $ul^2 + vm^2 + wn^2 = 0$ are perpendicular, if $a^2 (v + w) + b^2$<br>$a^2 + c^2 (u + v) = 0$ and, parallel, if $\frac{a^2}{u} + \frac{b^2}{v} + \frac{c^2}{w} = 0$<br>on E                            |     |
|----|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 36 | types<br>where   | the text carefully and answer the questions: A shopkeeper sells three of flower seeds $A_1$ , $A_2$ , $A_3$ . They are sold in the form of a mixture, the proportions of these seeds are $4 : 4 : 2$ respectively. The germination of the three types of seeds are $45\%$ , 60% and 35% respectively. | [4] |
|    | Based            | on the above information:                                                                                                                                                                                                                                                                             |     |
|    | 1.               | Calculate the probability that a randomly chosen seed will germinate.                                                                                                                                                                                                                                 |     |
|    | 2.               | Calculate the probability that the seed is of type A2, given that a randomly chosen seed germinates.                                                                                                                                                                                                  |     |
|    | 3.               | A die is throw and a card is selected at random from a deck of 52 playing cards. Then find the probability of getting an even number on the die and a spade card.                                                                                                                                     |     |
|    |                  | OR                                                                                                                                                                                                                                                                                                    |     |
|    | 4.               | If A and B are any two events such that $P(A) + P(B) - P(A \text{ and } B) = P(A)$ , then find $P(A B)$ .                                                                                                                                                                                             |     |
| 37 | repres<br>repres | <b>the text carefully and answer the questions:</b> If two vectors are<br>sented by the two sides of a triangle taken in order, then their sum is<br>sented by the third side of the triangle taken in opposite order and this is<br>n as triangle law of vector addition.                            | [4] |
|    | 1.               | If $\vec{p}$ , $\vec{q}$ , $\vec{r}$ are the vectors represented by the sides of a triangle taken in order, then find $\vec{q} + \vec{r}$ .                                                                                                                                                           |     |
|    | 2.               | If ABCD is a parallelogram and AC and BD are its diagonals, then find the value of $\overrightarrow{AC} + \overrightarrow{BD}$ .                                                                                                                                                                      |     |
|    | 3.               | If ABCD is a parallelogram, where $\overrightarrow{AB} = 2 \ \vec{a}$ and $\overrightarrow{BC} = 2 \ \vec{b}$ , then find the value of $\overrightarrow{AC} - \overrightarrow{BD}$ .                                                                                                                  |     |
|    |                  | OR                                                                                                                                                                                                                                                                                                    |     |

