Subject: Mathematics (Basic)

Subject Code: 241

Time: 3 Hours Max. Marks: 80

Marking scheme

|    | Marking scheme                                                                                             |          |
|----|------------------------------------------------------------------------------------------------------------|----------|
|    | SECTION A                                                                                                  | 1        |
| 1  | (b) 7                                                                                                      | 1        |
| 2  | (a) $\frac{1}{3}$                                                                                          |          |
| 3  | (c) no real roots                                                                                          | 1        |
| 4  | (d) 45°                                                                                                    | 1        |
| 5  | $(d)\frac{1}{6}$                                                                                           | 1        |
| 6  | (a) $x^2 - 2x + 1$                                                                                         | 1        |
| 7  | (b) 24                                                                                                     | 1        |
| 8  | (a) 30 cm                                                                                                  | 1        |
| 9  | (d) 6                                                                                                      | 1        |
| 10 | (a) 0                                                                                                      | 1        |
| 11 | (a) $9\pi \ sq.cm$                                                                                         | 1        |
| 12 | $(d)\frac{1}{2}$                                                                                           | 1        |
| 13 | (b) -5                                                                                                     | 1        |
| 14 | (a) 15                                                                                                     | 1        |
| 15 | (b) 8 units                                                                                                | 1        |
| 16 | (b) (i) and (ii) only                                                                                      | 1        |
| 17 | (c) 3                                                                                                      | 1        |
| 18 | (c) always less than OA                                                                                    | 1        |
| 19 | (d) Assertion (A) is false but Reason (R) is true.                                                         | 1        |
| 20 | (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). | 1        |
|    | SECTION B                                                                                                  |          |
| 21 | Let $5+2\sqrt{7}$ be a rational number.                                                                    | 1/_      |
|    | $5+2\sqrt{7}=\frac{p}{q}$ , where p and q are integers, $q \neq 0$                                         | 1/2      |
|    | $2\sqrt{7} = \frac{p}{q} - 5$ $\sqrt{7} = \frac{p-5q}{3q}$                                                 | 1/2      |
|    | 2 <i>q</i>                                                                                                 |          |
|    | We know that $p$ and $q$ are integers, $\frac{p-5q}{2q}$ is a rational number.                             | <u> </u> |
|    | $\therefore \sqrt{7}$ is also a rational number. But given that $\sqrt{7}$ is an irrational number.        |          |

|    | This contradicts our assumption.                                                                                                                                                 |     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | ∴ 5+2√7 is an irrational number.                                                                                                                                                 | 1/2 |
| 22 | In $\triangle ABC$ , $AB = AC$ which signifies $\angle ABC = \angle ACB$ as angles opposite to equal sides are equal                                                             | 1/2 |
|    | In ΔABD and ΔECF                                                                                                                                                                 |     |
|    | $\angle ADB = \angle EFC = 90^{\circ} [\because AD \perp BC \text{ and } EF \perp AC]$                                                                                           | 1/2 |
|    | ∠ABD = ∠ECF [ proved above]                                                                                                                                                      | 1/2 |
|    | Thus we have $\triangle ABD \sim \triangle ECF$ (AA criterion)                                                                                                                   | 1/2 |
|    | OR In $\triangle BPE \& \triangle CPD$ $\angle BEP = \angle CDP$ (90°) $\angle BPE = \angle CPD$ (Vertically Opposite Angles) $\triangle BPE \sim \triangle CPD$ (AA similarity) | 1   |
|    | $\frac{BP}{CP} = \frac{PE}{PD} = \frac{BE}{CD}$ (Corresponding parts of similar triangles)                                                                                       | 1/2 |
|    | $\therefore BP \times PD = PE \times CP$                                                                                                                                         | 1/2 |
| 23 | Sum of the zeroes = Product of zeroes $\alpha + \beta = \frac{-b}{a} = \frac{-2}{k}$                                                                                             | 1/2 |
|    | $\alpha\beta = \frac{c}{a} = \frac{3k}{k}$                                                                                                                                       | 1/2 |
|    | $\frac{-2}{k} = \frac{3k}{k}$                                                                                                                                                    | 1/2 |
|    | $k = \frac{-2}{3}$ OR                                                                                                                                                            | 1/2 |
|    | $\alpha + \beta = \frac{-b}{a} = \frac{-(-1)}{2} = \frac{1}{2}$                                                                                                                  | 1/2 |

|    | $\alpha\beta = \frac{c}{a} = \frac{15}{2}$                                                                                                                                                                                                                   | 1/2                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|    | $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ $= \frac{1}{15}$                                                                                                                                                                  | 1/ <sub>2</sub>                                                                 |
| 24 | Let P(x,y) be equidistant from the points A(7,1) and B(3,5)<br>Given that AP = BP. $\therefore$ AP <sup>2</sup> = BP <sup>2</sup><br>$(x-7)^2 + (y-1)^2 = (x-3)^2 + (y-5)^2$<br>$x^2 - 14x + 49 + y^2 - 2y + 1 = x^2 - 6x + 9 + y^2 - 10y + 25$<br>x - y = 2 | 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> |
| 25 | AP=BP(Tangents from an external point to the circle) BP= 5 cm In $\triangle PAB$ $\angle BPA + \angle PAB + \angle PBA = 180^{\circ}$ $60^{\circ} + x + x = 180^{\circ}$ $60^{\circ} + 2x = 180^{\circ}$ $x = 60^{\circ}$                                    | 1/2                                                                             |
|    | ∴ $PAB$ is an equilateral $\Delta$                                                                                                                                                                                                                           | 1/2                                                                             |
|    | AB =5 cm                                                                                                                                                                                                                                                     | 1/2                                                                             |
|    | SECTION C                                                                                                                                                                                                                                                    | 1,                                                                              |
| 26 | Greatest volume of each tin= HCF(120, 180)                                                                                                                                                                                                                   | 1/2                                                                             |
|    | $120 = 2 \times 2 \times 2 \times 3 \times 5$<br>$180 = 2 \times 2 \times 3 \times 3 \times 5$                                                                                                                                                               | 1                                                                               |
|    | HCF = 60                                                                                                                                                                                                                                                     | 1/2                                                                             |
|    | Number of tins used = $120/60=2$ , $180/60=3$                                                                                                                                                                                                                | 1                                                                               |
|    | OR                                                                                                                                                                                                                                                           |                                                                                 |
|    | The time to flash next together = LCM(80,90,110)                                                                                                                                                                                                             | 1/2                                                                             |
|    | $80 = 2^4 \times 5$<br>$90 = 2 \times 3^2 \times 5$<br>$110 = 2 \times 5 \times 11$                                                                                                                                                                          | 1 1 2                                                                           |

|    | LCM = 7920 sec = 2 hours 12 min The three bulbs will flash all together again at 10:12 am                                                                                              | 1/2 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | again at 10:12 am                                                                                                                                                                      | 1/2 |
| 27 | Probability of an event = $\frac{Number of favourable outcomes}{Total number of sevent}$                                                                                               | 1/2 |
|    | rotal number of outcomes                                                                                                                                                               |     |
|    | Total outcome=52 - 6 = 46                                                                                                                                                              | 1/2 |
|    | i) Total red cards= 26-6 =20                                                                                                                                                           | 1/2 |
|    | Probability of drawing a red colour card= $\frac{20}{46} = \frac{10}{23}$                                                                                                              | 1/2 |
|    | ii) Probability of drawing a black king = $\frac{2}{46} = \frac{1}{23}$                                                                                                                | 1/2 |
|    | iii) Probability of drawing an ace = $\frac{4}{46} = \frac{2}{23}$                                                                                                                     | 1/2 |
| 28 | $a = 12$ $a_n = 96$                                                                                                                                                                    | 1/2 |
|    | $a_n = a + (n-1)d$<br>96 = 12 + (n-1)4<br>n = 22                                                                                                                                       | 1   |
|    | $S_n = \frac{n}{2} [2a + (n-1)d]$                                                                                                                                                      | 1/2 |
|    | $S_{22} = \frac{22}{2} [2 \times 12 + (22 - 1)4]$ =1188                                                                                                                                | 1   |
| 9  | Let $x - axis$ cuts the line segment joining the points A $(4, -2)$ and B $(-4, 6)$ at $(x, 0)$ in the ratio $k: 1$                                                                    | 1/2 |
|    | Using section formula,<br>$(x,0) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$ $= \left(\frac{-4k + 4}{k + 1}, \frac{6k - 2}{k + 1}\right)$ | 1/  |
|    | $0 = \frac{6k-2}{k+1}$ $6k-2=0$                                                                                                                                                        | 1   |
|    | $6k = 2$ $k = \frac{1}{2}$                                                                                                                                                             | 1   |

| 1   |                                                                                       |      |
|-----|---------------------------------------------------------------------------------------|------|
|     | the x-axis divides the line segment at the ratio 1:3                                  | 1.   |
|     | $x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} = \frac{1(-4) + 3(4)}{4} = 2$                | 1/2  |
|     | Coordinates of the point of division is $(2,0)$                                       | 1/2  |
| -   |                                                                                       | , 2  |
| 30  | Length of the arc = 44cm                                                              |      |
|     | $\frac{\theta}{360^{\circ}} \times 2\pi r = 44$                                       | 1/2  |
|     | 360°                                                                                  | 12   |
|     | $\theta$ 22 $\neg$                                                                    | 1    |
|     | $\frac{\theta}{360^{\circ}} \times 2 \times \frac{22}{7} \times 42 = 44$              | 1    |
|     | -                                                                                     |      |
|     | $\theta = 60^{\circ}$                                                                 |      |
|     |                                                                                       |      |
|     | Area of minor sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$                    | 1/2  |
|     | 360°                                                                                  |      |
|     | $=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 42 \times 42$             | 1/2  |
|     | $-\frac{1}{360^{\circ}} \wedge \frac{7}{7} \wedge 42 \times 42$                       | , 2  |
|     | $= 924 cm^2$                                                                          | 1,   |
| 31  | - 924 Cm                                                                              | 1/2  |
|     | Given: Circle with centre O, a point A lying outside the circle and two               |      |
|     | tangents on the circle from A.                                                        |      |
|     |                                                                                       |      |
|     |                                                                                       |      |
|     | O A                                                                                   |      |
|     |                                                                                       | 1    |
|     | Prove that: $AP = AQ$ .                                                               |      |
|     | Construction: Join OP, OQ and OA.                                                     |      |
|     |                                                                                       |      |
|     |                                                                                       |      |
|     | ∠ OQA and ∠ OPA are right angles, because these are angles between the                |      |
|     | radii and tangents, and they are right angles.                                        | 1/2  |
|     |                                                                                       | 1 '2 |
|     | <b>Proof:</b> Now in right triangles OQA and OPA,                                     |      |
|     | OQ = OP (Radii of the same circle)                                                    |      |
|     | OA = OA (Common)                                                                      | 1    |
|     | ∠ OQA and ∠ OPA (=90 °proved)                                                         |      |
|     | Therefore A OOA ~ A ODA (BLIC                                                         |      |
|     | Therefore, $\triangle$ OQA $\cong$ $\triangle$ OPA (RHS congruence)<br>AP = AQ (CPCT) | 17   |
|     | AI = AQ(CPCI)                                                                         | 1/2  |
| - [ |                                                                                       |      |

|     | (a) We have AB, BC, CD and DA are the tangents touching the circle at P, Q, R and S respectively. |       |
|-----|---------------------------------------------------------------------------------------------------|-------|
|     | 1                                                                                                 | 1     |
|     | AP=AS, BP= BQ, CR= CQ and DR =DS  [Tangents from an external point to the circle are equal]       |       |
|     | On adding we get                                                                                  | 1/2   |
|     | AP+BP+CR+DR = AS+BO+CO+DR                                                                         | 1/2   |
|     | Thus $AB + CD = AD + BC$                                                                          | 1     |
|     | SECTION D                                                                                         |       |
| 32  | Let the present age of Tracy be x years                                                           | 1/2   |
|     | Age before 5 years = (x-5) years                                                                  | /2    |
|     | $(x-5)^2 = 5x + 11$                                                                               |       |
|     | $r^2 = 10r + 25$ 5 11 0                                                                           | 1     |
|     | $ \begin{vmatrix} x^2 - 10x + 25 - 5x - 11 = 0 \\ x^2 - 15x + 14 = 0 \end{vmatrix} $              |       |
|     | (x-1)(x-14)=0                                                                                     | 2 1/2 |
|     | x = 1  or  x = 14                                                                                 |       |
|     | But present age cannot be 1 year                                                                  | 1/2   |
|     | ∴ Tracy's age is 14 years.                                                                        |       |
|     | OR                                                                                                | 1/2   |
|     |                                                                                                   |       |
|     | For real and equal roots, $b^2 - 4ac = 0$                                                         | 1     |
|     | a = (k+1) $b = 2(k+3)$ $c = k+8$                                                                  | 1     |
|     | $2(k+3)^2 - 4(k+1)(k+8) = 0$                                                                      |       |
|     |                                                                                                   | 1/    |
| - 1 | $4(k^2 + 6k + 9) - 4(k^2 + 9k + 8) = 0$                                                           | 1     |
|     | $4k^2 + 24k + 36 - 4k^2 - 36k - 32 = 0$                                                           |       |
|     | -12k+4=0                                                                                          | 1     |
|     | 12k = 4                                                                                           | 1,    |
|     |                                                                                                   | 1     |
|     | $k = \frac{1}{3}$                                                                                 |       |
| 1 ' |                                                                                                   |       |

|     | Median = 50                               |                         |                     |              |           |
|-----|-------------------------------------------|-------------------------|---------------------|--------------|-----------|
|     | Total frequency = 90                      | )                       |                     |              |           |
|     | Marks                                     | Number of               | Cf                  |              |           |
|     | Obtained                                  | students                |                     |              | 1         |
|     |                                           | (f)                     |                     |              |           |
|     | 20 - 30                                   | p                       | р                   |              |           |
|     | 30 – 40                                   | 15                      | p + 15              |              | 1         |
|     | 40 - 50                                   | 25                      | p + 40              |              |           |
|     | 50 - 60                                   | 20                      | p + 60              |              |           |
|     | 60 – 70                                   | q                       | p + q + 60          |              |           |
|     | 70 – 80                                   | 8                       | p + q + 68          |              |           |
|     | 80 - 90                                   | 10                      | p + q + 78          |              |           |
|     | Median class is 50-6                      | $0 \ l = 50 \ f = 2$    |                     |              | 1/2       |
|     | Triculari class is so c                   | 70, t = 50 , = 2        | $c_j = p + 10$      |              | /2        |
|     | $Median = l + \frac{\frac{N}{2} - cf}{f}$ |                         |                     |              |           |
|     | Median = $l + \frac{2}{f}$                | × h                     |                     |              | 1/2       |
|     |                                           |                         |                     |              | 12        |
|     | $50 = 50 + \frac{45 - (40 + p)}{20}$      | $\frac{0}{2} \times 10$ |                     |              | 1/2       |
|     | 20                                        |                         |                     |              | /2        |
|     | $50 = 50 + \frac{45 - 40}{20}$            | - p                     |                     |              |           |
|     |                                           | - x 10                  |                     |              | 11/2      |
|     | 0=5-p                                     |                         |                     |              | 1 12      |
|     | p = 5                                     |                         |                     |              |           |
|     |                                           | $\neg$                  |                     |              |           |
|     | p + q + 78 = 90                           | _                       |                     |              |           |
|     | q = 7                                     |                         |                     |              | 1         |
|     |                                           |                         |                     |              |           |
|     | Cylinder                                  | Co                      | ne                  |              | fig<br>1/ |
|     | r = 3 cm $H = 12 c$                       | 1 – 5                   | cm  r = 3 cm        |              |           |
|     | r = 3 cm $H = 12 c$                       |                         |                     | /n \ \\ 3.3m |           |
|     |                                           |                         | $h^2 = l^2 - r^2$   | 0 3 300      |           |
|     |                                           |                         | $= 5^2 - 3^2$       | 3            | ١.        |
|     |                                           | h                       | = 4 cm              |              | 1         |
|     |                                           |                         | 1                   |              |           |
|     |                                           |                         |                     |              |           |
|     |                                           |                         |                     | 8 cm         |           |
|     |                                           |                         | - Valuma of cono    |              |           |
|     | Volume of rocket = V                      | olume of cylind         | er + volume of cone |              |           |
| - 1 | $=\pi r^2 H + \frac{1}{3}\pi r^2$         | L                       |                     | _            |           |

|      | $=5+1+\tan^2 A+1+\cot^2 A$                                                         |     |
|------|------------------------------------------------------------------------------------|-----|
|      | =7+tan <sup>2</sup> A+cot <sup>2</sup> A                                           |     |
| 36 i | $ \ln \Delta POB, \cos 30^{\circ} = \frac{OP}{OB} $                                | 1   |
|      | $\sqrt{3}$ 36 $\frac{1}{36}$                                                       | 1   |
|      | $\frac{\sqrt{3}}{2} = \frac{36}{OB}$                                               |     |
|      | OB = 41.52  m                                                                      | 1/2 |
| ii)  | $\ln \Delta POA$                                                                   | 1/2 |
|      | $\tan 45^\circ = \frac{AP}{OP}$                                                    | /2  |
|      | AP = OP = 36  m                                                                    |     |
|      | - 50 m                                                                             | 1/2 |
|      | In $\triangle POB$ ,                                                               |     |
|      | $\tan 30^{\circ} = \frac{BP}{OP}$                                                  |     |
|      | $BP = \frac{36}{\sqrt{3}} = 12\sqrt{3} = 20.76 \text{ m}$                          | 1   |
|      | $\sqrt{3}$ 12 $\sqrt{3}$ 20.76 m                                                   |     |
|      | AB = AP - BP                                                                       | 1/2 |
|      | = 36 - 20.76 = 15.24  m                                                            | /2  |
|      | OR                                                                                 |     |
|      | b = 36                                                                             |     |
|      | In $\triangle POB$ ,                                                               |     |
|      | $\tan 30^{\circ} = \frac{BP}{OP}$                                                  |     |
|      | $BP = \frac{36}{\sqrt{3}} = 12\sqrt{3} = 20.76 \text{ m}$                          |     |
|      | Area of $\triangle OPB = \frac{1}{2}bh$                                            | 1   |
|      | 1                                                                                  |     |
|      | $= \frac{1}{2} \times 36 \times 20.76 = 373.68 \ m^2$                              |     |
| ii)  | OP=36-24 = 12 m                                                                    | 1   |
|      | In $\triangle POB$ , $\tan \theta^{\circ} = \frac{BP}{OP} = \frac{12\sqrt{3}}{12}$ | 1/2 |
|      | $\tan 	heta^{\circ} = \sqrt{3}$                                                    |     |
|      | $\theta = 60^{\circ}$                                                              | 1/2 |
| 7 i) | AAA similarity criteria                                                            | 1   |
| ii)  | XY    AC                                                                           |     |



| Fixed charge = AED 12                                            | 1/2 |
|------------------------------------------------------------------|-----|
| OR                                                               |     |
| x + 5y = 27————————————————————————————————————                  |     |
| x + 5y = 27————————————————————————————————————                  | 1   |
| -6y = -18                                                        |     |
| y = 3                                                            |     |
| Additional charge = Dh 3                                         | 1/2 |
| Fixed price = Dh 12                                              | 1/2 |
| Amount paid for 10 km = Dh 42                                    | 1   |
| $\frac{a_1}{b} \neq \frac{b_1}{b}$ , lines intersect at a point. |     |