

BANGALORE SAHODAYA SCHOOLS COMPLEX ASSOCIATION (BSSCA) **Člass XI**Í MARKING SCHEME

MATHEMATICS (CODE-041)

SET B

SECTION:A (MULTPLE CHOICE QUESTIONS- 1 MARK EACH)

Question	Hints/Solution	Answer
No		
1.	$A^2 = \lambda A$	а
	$\begin{vmatrix} 18 & -18 \\ -18 \end{vmatrix} = \lambda \begin{vmatrix} 3 & -3 \\ -3 \end{vmatrix} \Rightarrow \lambda = 6$	
2.	A = A'	b
	$\begin{vmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 3 & 3a \\ 2b & 1 & 3 \end{vmatrix}$	
	$\begin{bmatrix} 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix} = \begin{bmatrix} 2b & 1 & 3 \\ -2 & 3 & -1 \end{bmatrix}$	
	On comparing $2b = 3$, $3a = -2$	
	$b = \frac{3}{2}$, $a = \frac{-2}{3}$	
	$\therefore a + b = b + a = \frac{3}{2} - \frac{2}{2} = \frac{5}{6}$	
3.	$det(A^{-1}) = (detA)^k$	d
	$\frac{1}{ k } = A ^k \Rightarrow 1 = A ^{k+1} , \Rightarrow A ^0 = A ^{k+1} , \Rightarrow k+1=0, \Rightarrow k = -1$	
4.	A A(adiA) = $ A I$. But A is a singular matrix. $ A =0$. $A(adiA)=0$	а
5.	$ A = \lambda^2 - 4$, and $ A^3 = 125$, $\therefore A ^3 = 125$, $\therefore A = 5$	b
	$\therefore 5 = \lambda^2 - 4, \ \Rightarrow \lambda = \pm 3.$	
6.	$(\vec{a}+\lambda\vec{b})$. $\vec{c} = 0$, $\therefore (2-\lambda)3 + (2+2\lambda) = 0$, $\therefore \lambda = 8$	b
7.	Median is $2i + 2k$. And its length is $ 2i + 2k = 2\sqrt{2}$.	С
8.	Area= $\frac{1}{2} \vec{d_1} \times \vec{d_2} = \frac{1}{2} -2i - 14j - 10k = \frac{\sqrt{300}}{2} = 5\sqrt{3}$	а
9.	Line is $\frac{x-b}{a} = \frac{y}{1} = \frac{z-d}{c}$. The direction ratios are a, 1, c.	b
10.	The probability that both the tickets will show even numbers is	а
	$\frac{12}{25} \times \frac{11}{24} = \frac{11}{50}$	
11.	Order=2 and degree=2. The sum of order and degree=4	С
12.	Integrating factor is $e^{\int (\frac{1}{x} + \cot x) dx} = e^{\log x \sin x} = x \sin x$	b
13.	$I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) dx. \text{Also I} = \int_{0}^{\frac{\pi}{2}} \log(\tan [\frac{\pi}{2} - x] dx$	b
	$\frac{\pi}{2} \log 1 = 0$	
14	$\frac{1}{2} \frac{1}{2} \frac{1}$	
14.	On integrating $f(x) = \frac{x}{2} + \frac{1}{x} + C$, and $f(1) = \frac{1}{2} + 1 + C$,	a
	C = -1.	
	$\therefore f(x) = \frac{x^2}{x^2} + \frac{1}{x^2} - 1$	
15	$\frac{1}{1} \frac{1}{2} \frac{1}{x}$	h
15.	$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} (-1 + a) = -1 + a$	α
	$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} (1+b) = 1+b$	

	f(x) = a + b	
	$∴ a + b = a - 1$ and $a + b = 1 + b$, $\Rightarrow a = 1, b = -1$	
16.	$y' = \frac{\cos(\log x)}{x}, y'' = \frac{-\sin(\log x) - \cos(\log x)}{x^2},$ $\therefore x^2 y'' + xy' = -y$	b
17.	Minimum value is at (4,3)=24	d
18.	Minimum value is at $(0,8)=-24$	С
19.	Both A and R are true and R is the correct explanation of A. $i.e - 1 \le 2x - 1 \le 1$ $0 \le 2x \le 2$ $0 \le x \le 1 \Longrightarrow x \in [0,1]$	а
20.	Both A and R are true and R is the correct explanation of A. i.e $\cos \theta = \left \frac{\sqrt{3} - 1 - \sqrt{3} - 1 + 8}{\sqrt{1 + 1 + 4} \sqrt{3} + 1 - 2\sqrt{3} + 3 + 1 + 2\sqrt{3} + 16} \right = \frac{1}{2}$ $\theta = \frac{\pi}{3}$	а

SECTION B This section comprises of VSA of 2 marks each

21.	$\tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) + \tan^{-1}\left(-\sqrt{3}\right) + \tan^{-1}\left(\sin\left(\frac{-\pi}{2}\right)\right)$	
	$-\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \tan^{-1}(\sqrt{3}) + \tan^{-1}(-1)$	1
	$\frac{-\pi}{6} - \frac{\pi}{3} - \frac{\pi}{4} = \frac{-3\pi}{4}$	1
21.(or)	For one-one:	
	Let $x_1, x_2 \in A$,	
	$f(x_1) = f(x_2) \Longrightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$	1
	$x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 2x_1 + 6$	
	$x_1 = x_2$. Hence, function is one-one.	
	For onto:	
	Let for $y \in B$, there exist $x \in A$ such that	
	$y = f(x) \Longrightarrow y = \frac{x-2}{x-3} \Longrightarrow xy - 3y = x - 2$	1
	x(y-1) = 3y - 2	
	$x = \frac{3y-2}{y-1} \epsilon A$ Hence, function is onto.	
	Therefore, f is 1-1 and onto.	

22.	Given: $\frac{dA}{dt} = k$	
	$ \begin{array}{c} dt \\ A = \pi r^2 \longrightarrow dA = 2\pi r^{dr} \longrightarrow k^{k} = dr (1) \end{array} $	1
	$\frac{H}{dt} \longrightarrow \frac{1}{dt} \longrightarrow \frac{1}{dt} \longrightarrow \frac{1}{2\pi r} \longrightarrow \frac{1}{dt} \dots \dots$	
	Now, $dP dr dP k dP k$	
	$P = 2\pi r \Rightarrow \frac{dr}{dt} = 2\pi \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = 2\pi \times \frac{\kappa}{2\pi r} = \frac{dr}{dt} = \frac{\kappa}{r}$	1
	$dP \propto 1$ at at $2\pi r$ at r	
	$\frac{-d}{dt}$ r	
23.	$\frac{\lambda+2}{3} = \frac{y+1}{2} = \frac{z-3}{2} = \lambda$, is the equation of the line	
	General point, $(x = 3\lambda - 2; y = 2\lambda - 1; z = 2\lambda + 3)$	4
	The distance between the point on the line and given point P(1,3,3) is 5	Ŧ
	units, then	
	$\sqrt{(3\lambda - 2 - 1)^2 + (2\lambda - 1 - 3)^2 + (2\lambda + 3 - 3)^2} = 5$	1
	On solving , $\lambda = 0,2$	Ŧ
	When $\lambda = 0$, the point is (-2,-1,3); $\lambda = 2$, the point is (4,3,7).	
23.	Let $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$,	
(or)	Given, $\vec{r} \cdot \vec{a} = 0 \Longrightarrow (x\hat{\imath} + y\hat{\jmath} + z\hat{k}) \cdot (2\hat{\imath} + \hat{k}) = 0 \Longrightarrow 2x + z = 0 \dots (1)$	1/2
	i j k i j k	
	Given, $\vec{r} \times b = \vec{c} \times b \Longrightarrow \begin{vmatrix} x & y & z \end{vmatrix} = \begin{vmatrix} 4 & -3 & 7 \end{vmatrix}$	1
	$\begin{vmatrix} 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	
	$(y - 2)i + (2 - x)j + (x - y)k = -10i + 3j + 7k$ $y - z10i \cdot z - x - 3i \cdot x - y - 7$ (2)	
	y = 2 = -10, 2 = x = 3, x = y = 7(2) On solving (1) and (2)	1/
	$r = -1$ $v = -8$ $z = 2$ therefore: $\vec{r} = -\hat{i} - 8\hat{i} + 2\hat{k}$	/2
	x = 1, y = 0, 2 = 2, therefore, $y = 1, 0, y = 2k$	
24.	$\log v = a \tan^{-1} x$	
	1 dy a dy	
	$\left \frac{1}{y dx}\right = \frac{1}{1 + x^2} \Longrightarrow (1 + x^2) \frac{1}{dx} = dy$	1
	Again differentiate,	
	$(1 + x^2) d^2y + 2x^2 dy = dy + (1 + x^2) d^2y + (2x - x) dy$	1
	$(1+x^2)\frac{dx^2}{dx^2} + 2x\frac{dx}{dx} = a\frac{dx}{dx} \Longrightarrow (1+x^2)\frac{dx^2}{dx^2} + (2x-a)\frac{dx}{dx} = 0$	
25.	$\vec{a} - \vec{b} = (\hat{\imath} + 2\hat{\jmath} + \hat{k}) - (2\hat{\imath} + \hat{\jmath}) = -\hat{\imath} + \hat{\jmath} + \hat{k}$	
	$\vec{c} - \vec{b} = (3\hat{\imath} - 4\hat{\jmath} - 5\hat{k}) - (2\hat{\imath} + \hat{\jmath}) = \hat{\imath} - 5\hat{\jmath} - 5\hat{k}$	1/2
	Unit vector perpendicular to both $\vec{a} - \vec{b}$ and $\vec{c} - \vec{b}$	
	$(\vec{a} - \vec{b}) \times (\vec{c} - \vec{b})$	
	$\Rightarrow \frac{(1)}{ (\vec{x} - \vec{k}) \times (\vec{x} - \vec{k}) }$	1/
	$\left \left(a - b \right) \times \left(c - b \right) \right $	72
	$\left \left(\vec{a} - \vec{b} \right) \times \left(\vec{c} - \vec{b} \right) \right = \left \begin{array}{c} \vec{c} & \vec{b} \\ -1 & 1 & 1 \end{array} \right $	
		1/2
	$= \left((-5+5)\hat{i} - (5-1)\hat{i} + (5-1)\hat{k} \right)$	
	=-4i+4k	
	$ (\vec{a} - \vec{b}) \times (\vec{c} - \vec{b}) = \sqrt{16 + 16} = 4\sqrt{2}$	1/2
	$ (u - b) \land (v - b) = \sqrt{10 + 10} = \frac{1}{10} \frac{1}{2}$	
1		

SECTION C (Short Answer Questions of 3 Marks each)

26.	$\int \frac{\cos(x+a)}{dx} dx = \int \frac{\cos\{(x+b) + (a-b)\}}{dx} dx$		
	$\int \frac{1}{\sin(x+b)} dx = \int \frac{1}{\sin(x+b)} dx$		
	$=\int \frac{\cos(x+b)\cos(a-b)-\sin(x+b)\sin(a-b)}{\sin(x+b)}dx$		
	$= \cos(a-b) \int \cot(x+b) dx - \sin(a-b) \int 1 dx$		
	$= \cos(a-b) \cdot \log \sin(x+b) - \sin(a-b)x + c$		
27.	Group of 50 people, 20 b	elieve in non-violence	
	X; Number of Persons wh	o are non-violent	1/2
	<i>X</i> : 0,1,2		
	Х	P(X)	
	0	$P(0) = \frac{30_{C_2} \times 20_{C_0}}{30 \times 29} = \frac{30 \times 29}{30 \times 29}$	_
		$50_{c_2} = 50 \times 49$	1½
		$P(0) = \frac{87}{2}$	
	1	<u>245</u> <u>20 × 20</u>	
		$P(1) = \frac{30_{C_1} \times 20_{C_1}}{50}$	
		50_{C_2}	
		$=\frac{30\times20\times2}{50\times40}$	
		120 50 × 49	
		$P(1) = \frac{1}{245}$	
	2	$30_{c_0} \times 20_{c_2} 20 \times 19$	
		$P(2) = \frac{1}{50_{C_2}} = \frac{1}{50 \times 49}$	
		$n(2) = \frac{38}{38}$	
		$P(2) = \frac{1}{245}$	
	$Mean = \sum X. P(X) = 0 \times H$	$P(0) + 1 \times P(1) + 2P(2) = \frac{196}{245}$	1
		210	
27.OR	X: Bolts produced by Mac	hine X ;P(X)=1/6	
	Y: Bolts produced by Mac	hine Y; P(Y)=2/6=1/3	
	Z: Bolts produced by Mac	hine Z; P(X)=3/6=1/2	
	E: defective bolts produc	ed	_
	i. $P(E/Y) = \frac{1.5}{100} = \frac{3}{200}$	$\frac{1}{0} = 0.015$	1
	ii. P(defective by Z)=	$P(Z) \times P(E/Z) = \frac{3000}{2} \times \frac{2}{2} = 0.01$	1
	$P(F) = \frac{1}{2} \times \frac{1}{2}$	$1 \times \frac{1.5}{1} + \frac{1}{2} = \frac{1}{1}$	1
20	$I(L) - \frac{1}{6} \times \frac{100}{100} + \frac{1}{6}$	$\frac{1}{3} \wedge \frac{1}{100} + \frac{1}{2} \wedge \frac{1}{100} - \frac{1}{60}$	T
28.	$\int_{1}^{1} (x-1 + x-2 + $	(x-4) dx =	1 1/
	$\int_{-1}^{4} (r-1) dr + \int_{-1}^{2} dr$	$(2-r) dr + \int_{-1}^{4} (r-2) dr + \int_{-1}^{4} (4-r) dr$	⊥ /2
	$\int_{1} \left(x - 1 \right) u x + \int_{1} \int_{1} \int_{1} \left(x - 1 \right) u x + \int_{1} \int_{1} \left(x - 1 \right) u x + \int_{1} \int_{1} \int_{1} \left(x - 1 \right) u x + \int_{1} \int_{1$	$\int_{2} \int_{2} \int_{1} \int_{1} (f - x) dx$	1 %
	$=\left[\frac{x^2}{2}-x\right]_{1}^{4}+\left[2x-\frac{x^2}{2}\right]_{1}^{2}$	$+\left[\frac{x^2}{2}-2x\right]_{2}^{4}+\left[4x-\frac{x^2}{2}\right]_{1}^{4}=\frac{23}{2}$	± / 2

28.(or)	Let $I = \int_{-\pi}^{\frac{\pi}{2}} \frac{x \sin x}{e^x + 1} dx \dots \dots \dots (i)$	
	$Also, I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\left(-\frac{\pi}{2} + \frac{\pi}{2} - x\right) \sin\left(\frac{-\pi}{2} + \frac{\pi}{2} - x\right)}{e^{\left(\frac{-\pi}{2} + \frac{\pi}{2} - x\right)} + 1} dx$	1/2
	$I = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{-x\sin(-x)}{e^{-x}+1} dx, I = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{x\sin x e^{x}}{e^{x}+1} dx \dots \dots \dots (ii)$	1⁄2
	Adding (i) and (ii), we obtain $2I = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{x \sin x}{e^{x}+1} + \frac{x \sin x e^{x}}{e^{x}+1}\right) dx$	1/2
	$2I = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} x \sin x dx , \ 2I = \left[-x \cos x\right]_{\frac{-\pi}{2}}^{\frac{\pi}{2}} + \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos x dx$	
	$2I = [-x \cos x] \frac{\frac{\pi}{2}}{-\pi} + [\sin x] \frac{\frac{\pi}{2}}{-\pi}$	1 ½
	2I = (0 - 0) + 1 - (-1),	
Q29.	$\frac{2}{(1+y^2)dx} = \frac{1}{(tan^{-1}y - x)dy}, y(0) = 0$	1
	$\Rightarrow \frac{dx}{dy} = \frac{tan^{-1}y - x}{1 + y^2} , \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{tan^{-1}y}{1 + y^2} \dots \dots (i) \text{ ,This is a linear}$	
	differential equation with $P = \frac{1}{1+y^2}$ and $Q = \frac{tan^{-1}y}{1+y^2}$,	
	$\therefore I.F = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1}y}$	1
	G.S	
	$xe^{\tan^{-1}y} = \int \frac{\tan^{-1}y}{1+y^2} e^{\tan^{-1}y} dy + C$	
	$\Rightarrow xe^{tan^{-1}y} = \int te^t dt + C, where \ t = tan^{-1}y,$	
	$\Rightarrow xe^{tan^{-1}y} = e^{tan^{-1}y}(tan^{-1}y - 1) + C(ii)$	
	It is given that $y = 0$ when x = 0 .From (ii), we get $0 = e^0(0-1) + C$ $\Rightarrow C = 1$	1
	From (ii) we get $xe^{tan^{-1}y} = e^{tan^{-1}y}(tan^{-1}y - 1) + 1$	
	$\Rightarrow (x - tan^{-1}y + 1)e^{tan^{-1}y} = 1$, which is the required solution.	
29.(or)	The given differential equation is $(x^2 + xy)dy = (x^2 + y^2)dx$	
	$\Rightarrow \frac{dy}{dy} = \frac{x^2 + y^2}{x^2 + y^2} \dots (i)$	
	$ax x^2 + xy$ Putting $y = xy$ and $\frac{dy}{dx} = y + x \frac{dv}{dx}$ in (i)	
	$\frac{dv}{dx} = \frac{v}{x^2 + v^2 x^2} + \frac{dv}{dx} + \frac{v^2}{1 + v^2}$	
	we get $v + x \frac{1}{dx} = \frac{1}{x^2 + vx^2}$, $\Rightarrow v + x \frac{1}{dx} = \frac{1}{1 + v}$	1
	$\Rightarrow x \frac{dv}{dx} = \frac{1 + v^2 - v - v^2}{1 + v}$	
	$\Rightarrow x \frac{dv}{dx} = \frac{1-v}{1+v} \Rightarrow x(1+v)dv = (1-v)dx$	
	$\Rightarrow \frac{1+v}{1-v} dv = \frac{dx}{v} \Rightarrow \frac{2-(1-v)}{1-v} dv = \frac{dx}{v}$. Integrating both sides we get	
	$\int \left(\frac{2}{1-v} - 1\right) dv = \int \frac{dx}{x} \Rightarrow \int \frac{2}{1-v} dv - \int 1 dv = \int \frac{dx}{x}$	1
	$\Rightarrow -2log 1-v -v = log x + logC$	

	$\Rightarrow \log x + \log C + \log C + \log x + \log C + \log x + \log C + \log x + \log C + $	+ 2log 1 - v = -v $= -v \Rightarrow C x (1 - v)^{2} = e^{-v}$ $= e^{-\frac{y}{x}}$ $e^{\frac{-y}{x}}$ (ii) , It is given that when y=0, x=1, C = 1, solution is $(x - y)^{2} = x e^{-\frac{y}{x}}$.	1
30.	Maximize and Mini	imize Z=5x+2y nts: $x - 2y < 2 \cdot 3x + 2y < 12 \cdot -3x + 2y < 3 \cdot x >$	
	$0; y \ge 0$		
	Y-axis 6 -3x + 5 4 4 $0 C (\frac{3}{2})$ $0 O (\frac{3}{2})$	$S = 3$ $\frac{3}{2} \cdot \frac{15}{4}$ $S = 3$	2
		$\begin{array}{cccc} A & 3 & 4 & 5 & 6 & X \text{-axis} \\ 0 & & & 3 \\ 3 & & & 5 \\ 3 & & & 3 \\ 3 & & & $	
	Corner Point	Z = 5x + 2y	
	O (0, 0) A (2, 0)	0 → Minimum 10	
	$B\left(\frac{7}{2},\frac{3}{4}\right)$	19 —→ Maximum	
	$C\left(\frac{3}{2},\frac{15}{4}\right)$	15	2
	$D\left(0,\frac{3}{2}\right)$	3	
	Hence, Z is minimum	at x = 0, y = 0 and minimum value = 0	
	Z is maximum at x =	$\frac{7}{2}$, y = $\frac{3}{4}$ and maximum value = 19	
31.	Let I = $\int \frac{\sqrt{x}}{\sqrt{x} - \sqrt[3]{x}} dx$,	: $I = \int \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}} - x^{\frac{1}{3}}} dx$, put $x = t^{6}$ and $dx = 6t^{5}$ dt, we get	1/2
	$I=\int \frac{t^3}{t^3-t^2} \cdot 6t^5 dt =$	$6\int \frac{t^{\circ}}{t-1}dt = 6\int \frac{t^{\circ}-1+1}{t-1}dt = 6\int \frac{t^{\circ}-1^{\circ}}{t-1} + \frac{1}{t-1}dt$	1/2
	$I = 6 \int t^5 + t^4 +$	$t^3 + t^2 + t + 1 + \frac{1}{t-1} dt$	1/
	$I = 6\left\{\frac{t^6}{6} + \frac{t^5}{5} + \frac{t}{4}\right\}$	$\frac{4}{4} + \frac{t^3}{3} + \frac{t^2}{2} + t + \log(t-1) \bigg\} + C$	/2 1/2
	$ _{1=6}\left\{\frac{x}{x} + \frac{x^{\frac{5}{6}}}{x^{\frac{5}{6}}} + \frac{x^{\frac{2}{3}}}{x^{\frac{3}{3}}} + \frac{x^{\frac{2}{3}}}$	$\left(x^{\frac{1}{2}} + \frac{x^{\frac{1}{3}}}{x^{\frac{1}{6}}} + x^{\frac{1}{6}} + \log(x^{\frac{1}{6}} - 1)\right) + C$	
	(6 5 3	3 2 2 7	

SECTION D (This section comprises of long answer-type questions (LA) of 5 marks each)

r		-
32.		1
	B (8, 4)	
	\rightarrow X	
	A (2, -2)	
	The intersecting points of the given curves are obtained by solving the equations $x - y = 4$ and $y^2 = 2x$ for x and y.	
	We have y ² = 8 + 2y i.e., (y – 4) (y + 2) = 0 which gives y = 4, –2 and x = 8, 2.	1
	Thus, the points of intersection are (8, 4), (2, −2). Hence	
	Area = $\int_{-2}^{4} \left(4 + y - \frac{1}{2}y^2\right) dy$	2
	$= \left 4y + \frac{y^2}{2} - \frac{1}{6}y^3 \right _{-2}^{4} = 18 \text{ sq units.}$	1/2 1/2
33.	Reflexive:	1
	Let $(a, b) \in N \times N$, then	
	a + b = b + a	
	$\Rightarrow (a, b)R(b, a)$ $\Rightarrow P is reflexing (1)$	
	\rightarrow K is regreative(1) Symmetric:	1 1/2
	Let $(a, b), (c, d) \in N \times N$ and $(a, b)R(c, d)$	1 /2
	a + d = b + c	
	b + c = a + d	
	c + b = d + a	
	(c,d)R(a,b)	
	$\Rightarrow R \text{ is symmetric}(2)$ Transitive:	
	Let $(a, b), (c, d), (e, f) \in N \times N$ and Let $(a, b)R(c, d), (c, d)R(e, f)$	1½
	$\Rightarrow a + d = b + c; c + f = d + e$	/2
	a+d+c+f = b+c+d+e	
	a + f = b + e	
	$(a, b) K(e, f) $ $ \rightarrow P is transisting $ $ (2)$	1/2
	\rightarrow r is if unisistive(3) From (1) (2) and (3)	
1		1

	R is an equivalence Relation.	
33.	Relation S is defined as S= { $(a, b) \in R \times R : 1 + ab > 0$	
(or)	Reflexive : Let $a \in R$	
	1 + a.a > 0	1
	$\Rightarrow 1 + a^2 > 0$, true for $a \in R$	
	\Rightarrow (a, a) is Reflexive.	
	Symmetric: Let $a, b \in R$ and $(a, b) \in S$	
	$\Rightarrow 1 + ab$	
	> 0	1
	1 + ba > 0	
	\Rightarrow (b, a) \in S	
	\Rightarrow R is symmetric	
	Transitive : Let $a, b, c \in R$ and $(a, b), (b, c) \in S$	1
	\Rightarrow 1 + ab > 0 and 1 + bc > 0 but this may not imply 1 + ac > 0.	
	$i. e(a, c) \in S.$	
	For example,	
	Let $a = 1, b = \frac{1}{2}, c = -\frac{3}{2}$ then $(a, b) \in S$ i. $e(1, \frac{1}{2}) \in S$	1⁄2
	$\Rightarrow 1 + 1 \times \frac{1}{2} > 0$, true	
	Now, $(b, c) \in S$ i. $e\left(\frac{1}{2}, -\frac{3}{2}\right) \in S$	
	$\Rightarrow 1 + \frac{1}{2} \times -\frac{3}{2} > 0 \Rightarrow 1 - \frac{3}{4} > 0 \Rightarrow \frac{1}{4} > 0, true$	1⁄2
	Now for $(a, c) \in S$	
	i.e $(1, -\frac{3}{2}) \in S$	1/2
	$\Rightarrow 1 + 1 \times -\frac{3}{2} > 0 \Rightarrow -\frac{1}{2}$	
	$\Rightarrow -\frac{1}{2} > 0$, hence false	
	$\therefore (a b) \in S(b c) \in S hut (a c) \notin S$	
	\Rightarrow S is not transitive	1/2
	Therefore S is reflexive symmetric and but not transitive	
	\Rightarrow therefore. S is not an equivalence Relation.	
34.	$L_{i}:\vec{r} = 3\hat{i} + 2\hat{i} - 4\hat{k} + \lambda(\hat{i} + 2\hat{i} + 2\hat{k})$	
	$I_{1} \cdot \vec{r} = 5\hat{i} = 2\hat{i} \pm \mu(3\hat{i} \pm 2\hat{i} \pm 6\hat{k})$	
	$\frac{D_1 \cdot I - 5i}{2J + \mu(5i + 2J + 0i)}$	1
	Any point on $L_1, I(3 + \lambda, 2 + 2\lambda, -4 + 2\lambda)$	
	If the L and L intersect then they must have a common point on them	
	in the L_1 and L_2 intersect then, they must have a common point on them,	1/2
	now $3 \pm \lambda = 5 \pm 3\mu$ (1)	1
	similarly $2 + 2\lambda = -2 + 2\mu$ (2)	
	$\Delta so - A + 2\lambda = - \Delta u$	
	solving 1 and 2	1
	we get $\lambda = -4$ $\mu = -2$	
	substitute the values in 3	
	-4 + 2(-4) = 6(-2)	1
	-12 = -12	
	LHS=RHS	
	Therefore the point of intersection(-1,-6,-12)	1/2

34.(or)	Shortest distance between lines with vector equations $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$	
	and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is $\left \frac{(\vec{b_1} \times \vec{b_2}).(\vec{a_2} - \vec{a_1})}{ \vec{b_1} \times \vec{b_2} } \right $	
	$\vec{r} = (1-t)\hat{\imath} + (t-2)\hat{\jmath} + (3-2t)\hat{k} \vec{r} = (s+1)\hat{\imath} + (2s-1)\hat{\jmath} - (2s+1)\hat{k}$	
	$= 1\hat{i} - t\hat{i} + t\hat{j} - 2\hat{j} + 3\hat{k} - 2t\hat{k} = s\hat{i} + 1\hat{i} + 2s\hat{j} - 1\hat{j} - 2s\hat{k} - 1\hat{k}$	
	$= (1\hat{\iota} - 2\hat{j} + 3\hat{k}) + t(-1\hat{\iota} + 1\hat{j} - 2\hat{k}) = (1\hat{\iota} - 1\hat{j} - 1\hat{k}) + s(1\hat{\iota} + 2\hat{j} - 2\hat{k})$	1
	Comparing with $\vec{r} = \vec{a_1} + t \vec{b_1}$, Comparing with $\vec{r} = \vec{a_2} + s \vec{b_2}$,	
	$\overline{a_1} = 1\hat{\imath} - 2\hat{\jmath} + 3\hat{k} \qquad \qquad \overline{a_2} = 1\hat{\imath} - 1\hat{\jmath} - 1\hat{k}$	
		1
	Now, $(\overrightarrow{a_2} - \overrightarrow{a_1}) = (1\hat{\iota} - 1\hat{j} - 1\hat{k}) - (1\hat{\iota} - 2j + 3\hat{k})$	
	$= (1-1)\hat{i} + (-1+2)\hat{j} + (-1-3)\hat{k}$	
	$= 0\hat{\imath} + 1\hat{j} - 4\hat{k}$	1/2
	$\left(\overrightarrow{\boldsymbol{b}_{1}}\times\overrightarrow{\boldsymbol{b}_{2}}\right) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix}$	
	$=\hat{\imath}[(1 \times -2) - (2 \times -2)] - \hat{\jmath}[(-1 \times -2) - (1 \times -2)] + \hat{k}[(-1 \times 2) - (1 \times 1)]$	
	$=\hat{i}[-2+4] - \hat{j}[2+2] A + \hat{k}[-2-1]$	1
	$=2\hat{i}-4\hat{j}-3\hat{k}$	
	Magnitude of $(\overrightarrow{b_1} \times \overrightarrow{b_2}) = \sqrt{2^2 + (-4)^2 + (-3)^2}$	1
	$ \overrightarrow{b_1} \times \overrightarrow{b_2} = \sqrt{4 + 16 + 9} = \sqrt{29}$	
	$d = \frac{8}{2}$ units	1/2
	$u = \sqrt{29}$ units.	
35.	$\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \end{bmatrix}$	
	$\begin{bmatrix} 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$	
	= -7 + 1 + 6 - 7 - 2 + 3 - 7 - 2 + 9	1
	$\begin{bmatrix} 5 - 3 - 2 & -5 + 6 - 1 & 5 + 6 - 3 \end{bmatrix}$	
	$= \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \end{bmatrix} = 8I$	1/2
		/2
	$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \end{bmatrix}$	
	$I f A = \begin{bmatrix} 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$	
	$\begin{bmatrix} -4 & 4 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 4 & 4 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$	1½
	$\begin{vmatrix} A^{-1} = \begin{vmatrix} -7 & 1 & 3 \\ -7 & 2 & -1 \end{vmatrix}, X = A^{-1}B = \begin{vmatrix} -7 & 1 & 3 \\ -7 & 2 & -1 \end{vmatrix} \begin{vmatrix} 9 \\ -7 & -1 & -1 \end{vmatrix}$	
	15 - 3 - 11 $15 - 3 - 11111[-16 + 36 + 4] $ $1[24] [3]$	1
	$X = \frac{1}{8} \begin{vmatrix} -28 + 9 + 3 \end{vmatrix} = \frac{1}{8} \begin{vmatrix} -16 \end{vmatrix} = \begin{vmatrix} -2 \end{vmatrix} \implies x = 3, y = -2, z = -1$	
	L 20 - 27 - 1 J $L - 8 J$ $L - 1J$	1

36.	1. $y = 4x - \frac{1}{2}x^2$			
	dy - 4			1
	$\frac{dx}{dx} = 4 - x$			
When $\frac{dy}{dx} = 0 \Longrightarrow 4 - x = 0 \Longrightarrow x = 4$				
	2. $x = 2 cm$,	1		
	$y = 4x - \frac{1}{2}x^2 \Longrightarrow y =$	$4 \times 2 - \frac{1}{2}2^2 = 6cr$	m	1
	Height of the plant will	be 6 cm		
	$3. f''(x) = -1 < 0 \Longrightarrow$	f(x) attains maxim	imum at $x = 4$,	
	$f(4) = 4 \times 4 - \frac{1}{2}4^2 =$	= 8 <i>cm</i>		1
	Local minimum value :	not defined		
	Local maximum value j	f(4) = 8cm		
	now, In [0,5]			
	f(0) = 0cm f(4) = 8cm			
	$f(5) = 4 \times 5 - \frac{1}{5^2} =$	= 20 - 125 = 75cr	m	
	1 + 1 + 1 = 1 + 1 = 1 = 1	- 20 12:5 - 7:507		1
	Absolute Maxima is x=4	4 and Absolute Max	imum value is 8cm	
	Absolute minima is x=0) and Absolute Minir	mum value is 0cm.	
	3. Or			
		Sign of f (x)	Nature of the function $f(x)$ strigtly improved in a	
	$(-\infty, 4)$ $(4, \infty)$	> 0	f(x)strictly increasing	
		20	j (k)sti tetty itter eusing	2
37.	$1.P(x) = -5x^2 + 125$	5x + 37500		
	P'(x) = -10x + 125,	when $P'(x) = 0, x =$	= 12.5	
	$P^{(x)}(x) = -10 < 0$ Therefore <i>at</i> $x = 125$	the profit is may	imum	1
	2. Maximum profit= $-$	$(5(12.5)^2 + 125 \times 1)^2$	12.5 + 37500 = ₹ 38281.25	1
	3.P(x) = 38250; -5x	$x^2 + 125x + 37500$	= 38250	1
	$x^2 - 25x + 150 = 0$ x - 10 = 15			1
	x = 10, x = 15 3. or			1 or
	When $x = 2, P(2) = -$	$-5 \times 2^2 + 125(2) +$	- 37500 = ₹37750	2
38.	Probability A will hit=	<u>4</u>		
	Probability B will hit $=$	<u>3</u> 4		1
	Probability C will hit $=$	$\frac{2}{3}$		
	i P(any two will hit)=P	(A will not hit)*P(B	will hit)*P(C will hit)+ P(A will	

Section E : (Case studies/Passage based questions of 4 marks each)

hit)*P(B will not hit)*P(C will hit)+ P(A will hit)*P(B will hit)*P(C will not hit) $= \left(1 - \frac{4}{5}\right) \times \frac{3}{4} \times \frac{2}{3} + \frac{4}{5} \times \left(1 - \frac{3}{4}\right) \times \frac{2}{3} + \frac{4}{5} \times \frac{3}{4} \times \left(1 - \frac{2}{3}\right)$ 1 $= \frac{1}{10} + \frac{2}{15} + \frac{1}{5} = \frac{13}{30}$ ii.. P(at least one will hit)=P(exactly one will hit)+P(exactly two will hit)+P(all will hit) P(exactly one will hit) = P(A will hit)*P(B will not hit)*P(C will not hit)+P(A will not hit)*P(B will hit)*P(C will not hit)+ P(A will not hit)*P(B will 1 not hit)*P(C will hit) $=\frac{4}{5}\times\left(1-\frac{3}{4}\right)\times\left(1-\frac{2}{3}\right)+\left(1-\frac{4}{5}\right)\times\frac{3}{4}\times\left(1-\frac{2}{3}\right)+\left(1-\frac{4}{5}\right)$ $\times \left(1 - \frac{3}{4}\right) \times \frac{2}{3}$ $= \frac{1}{15} + \frac{1}{20} + \frac{1}{30} = \frac{9}{60}$(1) P(exactly two will hit) = $\frac{13}{30}$(2) 1 P(all will hit) = $\frac{2}{5}$(3) Therefore , P(at least one will hit) = $\frac{9}{60} + \frac{13}{30} + \frac{2}{5} = \frac{59}{60}$