

OLIVE INTERNATIONAL SCHOOL, QATAR

Academic Year 2023 - 2024

Annual Examination

MATHEMATICS (041)

Grade: 9

Date: 25.02.2024

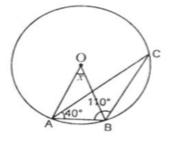
Max. Marks: 80

Duration: 3Hrs

Ger	General Instructions:						
i.	This Question Paper has 5 Sections A-E. All questions are compulsory.						
ii.	Section A has 20 MCQs carrying 1 mark each.						
iii.	Section B has 5 questions carrying 02 marks each.						
iv.	Section C has 6 questions carrying 03 marks each						
v.	Section D has 4 questions carrying 05 marks each.						
vi	Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.						
vii	Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.						

SECTION-A

I. Choose the correct answer.


(20 x 1 = 20)

- 1. The point (-1,-4) lies in :
 - a) I quadrant b) II quadrant

c) III quadrant

b) IV quadrant

2. In the given figure, O is the centre of the circle. If $\angle CAB = 40^{\circ}$ and $\angle CBA = 110^{\circ}$ the value of x is :

- 3. How many lines pass through one point?
 - a) One b) two c) three d) many

4. The TSA of a cone of radius r and slant height l is:

a)
$$\pi r(l+r)$$
 b) $\pi r\left(l+\frac{r}{4}\right)$ c) $\pi r\left(l+\frac{r}{2}\right)$ d) $\pi r\left(2l+\frac{r}{2}\right)$

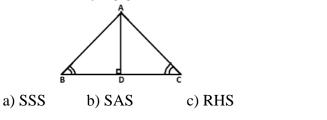
5. The degree of the zero polynomial is:

a) 0 b) 1 c) 2 d) not defined.

6. The ordinate of any point on the x-axis.

a) 0 b) 1 c) any point d) none of these.

- 7. Express y in terms of x in the equation 3x + y = 5.
 - a) y = 5-3x b) y = 3x-5 c) y = 5+3x d) y = 5+x
- 8. If $p(x) = 5x^2 4x + 3$ then p(1) =
 - a) 12 b) 1 c) 4 d) 0
- 9. The total surface area of a hemisphere of radius r is :
 - a) $3\pi r^2$ b) πr^2 c) $2\pi r^2$ d) $4\pi r^2$
- 10. The sides of a triangle are in the ratio of 3:5: 7 and its perimeter is 300 m. Then the length of the longest side is:
 - a) 60m b) 100m c) 140m d) 200m
- 11. If a solid sphere of radius r is melted and cast into the shape of a solid cone of height r, then the radius of the base of the cone is:
 - a) 3r b) 2r c) r d) 4r
- 12. The sum of either pair of opposite angles of a cyclic quadrilateral is :
 - a) 180° b) 90° c) 360° d) 100°
- 13. In \triangle ABC, AD is the perpendicular bisector of BC, then \triangle ABC is :


a) an isosceles triangle b) a right triangle c) an equilateral triangle d) none of these.

- 14. The radius of a sphere whose surface area is 154 cm^2
 - a) 49cm b) 7cm c) 14cm d) 3.5cm
- 15. The equation y = 3x + 5 has :

a) a unique solution b) only two solutions c) infinitely many solutions d) none of these.

d) AAS

16. In the adjoining figure, $\angle B = \angle C$ and $AD \perp BC$. The rule by which $\triangle ABD \cong \triangle ADC$:

17. Which of the following is the class-mark of the class interval 140 - 150?

a) 140 b) 150 c) 145 d) 290

18. Multiply $6\sqrt{5} \times 2\sqrt{5}$:

a) $12\sqrt{5}$ b) 30 c) 60 d) 12

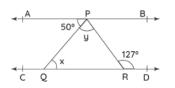
ASSERTION-REASON BASED QUESTIONS

In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

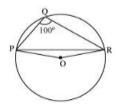
- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.
- 19. Assertion (A): $\sqrt{5}$ is an irrational number.

Reason (R): Square root of a positive integer which is not a perfect square is an irrational number.

20. Assertion (A): For all values of k, $(\frac{-3}{2}, k)$ is a solution of the linear equation 2x + 3 = 0.


Reason (R): The linear equation ax + b = 0 can be expressed as a linear equation in two variables as ax + y + b = 0.

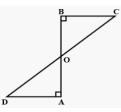
SECTION-B
$$(5x2=10)$$


21. Which of the following points lie on the i) x –axis ii) y-axis?

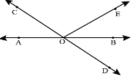
A(1, 1), B(3, 0), C(0, 3), E(-5, 0), F(0, -1), G(9, 0), H(0, -8).

- 22. Simplify: $(\sqrt{5} \sqrt{3})^2$
- 23. In the adjoining figure, if AB \parallel CD, \angle APQ = 50° and \angle PRD = 127°, find x and y.

24. In Figure, $\angle PQR = 100^\circ$, where P, Q and R, are points on a circle with centre O. Find $\angle OPR$.



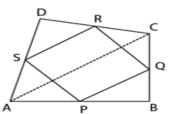
25. Give the possible expressions for the length and breadth of the rectangle if its area is $a^2 - a - 20$.


SECTION-C

(6x3=18)

- 26. Examine whether x + 2 is a factor of $x^3 + 3x^2 + 5x + 6$ and 2x + 4.
- 27. AD and BC are equal perpendiculars to a line segment AB, from the figure show that CD bisects AB.

- 28. State whether the following statements are true or false. Give reasons for your answers.
 - (i) Every natural number is a whole number.
 - (ii) Every integer is a whole number.
 - (iii) Every rational number is a whole number.
- 29. From the figure, the lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$:



30. Simplify $\frac{\sqrt{25}}{\sqrt[3]{64}} + \left(\frac{256}{625}\right)^{\frac{-1}{4}} - \left(\frac{64}{125}\right)^{\frac{-1}{3}}$.

31. Prove that a diagonal of a parallelogram divides it into two congruent triangles.

SECTION D $(4 \times 5 = 20)$

- 32. Verify that $x^3 + y^3 + z^3 3xyz = \frac{1}{2}(x + y + z)[(x y)^2 + (y z)^2 + (z x)^2]$
- 33. Find three solutions for each of the following equations: i) 4x + 3y = 12 ii) 3y + 4 = 0.
- 34. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. Show that
 - i) SR || AC and SR = $\frac{1}{2}$ AC ii) PQ = SR
 - iii) PQRS is a parallelogram

35. Consider the marks, out of 100, obtained by 51 students of a class in a test, given in the following table:

Marks	0-10	10 - 20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No. of	5	10	4	6	7	3	2	2	3	9
students										

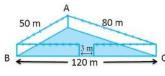
Draw a histogram and a frequency polygon corresponding to this frequency distribution table.

SECTION E

- 36. A triangular park ABC has sides 120m, 80m and 50m. A gardener Seema has to put a fence all around it and also plant grass inside.
 - i) Write the formula for finding the area of the triangular park.
 - ii) How much area does she need to plant?
 - iii) Find the cost of fencing it with barbed wire at the rate of Rs.20 per metre leaving a space 3m

wide for the gate on one side.

37. Read the text carefully and answer the questions: Sanjay and his mother visited in a mall. He observes that three shops are situated at P, Q, R as shown in the figure from where they have to purchase things according to their need. Distance between shop P and Q is 8 m and between shop P and R is 6m. Considering O as the center of the circle.



i) Find the measure of $\angle QPR$.

- ii) Find the measure of $\angle QSR$.
- iii) Find the radius of the circle.
- 38. For the annual sports day of Olive International School, grade 9 students are asked to make 20 hollow cones made of recycled cardboard. These cones are used as marking points in various sports events. Each cone has a base diameter of 30 cm and height 20cm. The outer side of each of the cone is to be painted.

- i) Write the formula for finding CSA of a right circular cone.
- ii) Find the CSA of one cone.
- iii) If the cost of painting is QR.7 per m², what will be the cost of painting all these cones?

