

Class X Session 2024-25 **MATHEMATICS STANDARD (SET – 01)** (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

General Instructions:

Read the following instructions carefully and follow them:

- **1.** This question paper contains 38 questions.
- **2.** This Question Paper is divided into 5 Sections A, B, C, D and E.
- 3. In Section A, Questions no. 1-18 are multiple choice questions (MCQs) and questions no. 19and 20 are Assertion-Reason based questions of 1 mark each.
- 4. In Section B, Questions no. 21-25 are very short answer (VSA) type questions, carrying 02 markseach.
- 5. In Section C, Questions no. 26-31 are short answer (SA) type questions, carrying 03 marks each.
- 6. In Section D, Questions no. 32-35 are long answer (LA) type questions, carrying 05 marks each.
- 7. In Section E, Questions no. 36-38 are case study based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively.
- 8. All Questions are compulsory. However, an internal choice in 2 Questions of section B, 2 Questions of section C and 2 Questions of section D has been provided. And internal choice hasbeen provided in all the 2 marks questions of Section E.
- 9. Draw neat and clean figures wherever required.
- **10.** Take $\pi = 22/7$ wherever required if not stated. TUTTU

11.Use of calculators is not allowed.

	Section A.						
	Section A consists of 20 questions of 1 mark each.						
1	If a pair of linear equations is consistent, then the lines will be:	1					
	(A) Parallel (B) always coincident						
	(C) intersecting or coincident (D) always intersecting						
2	3 chairs and 1 table cost Rs.900; whereas 5 chairs and 3 tables cost Rs.2,100. If the cost	1					
-	of 1 chair is Rs.x and the cost of 1 table is Rs.y , then the situation can be represented						
	algebraically as	F					
	(A) 3x + y = 900; 3x + 5y = 2100						
	(B) $x + 3y = 900$; $3x + 5y = 2100$						
	(C) 3x + y =900; 5x + 3y = 2100						
	(D) x + 3y = 900; 5x + 3y =2100						
3	The quadratic equation $x^2 - 4x + 3\sqrt{2} = 0$ has	1					
	(A) no real roots (B) two equal real roots						
	(C) two distinct real roots (D) more than 2 real roots						
4	If one root of the quadratic equation $ax^2 + bx + c = 0$ is the reciprocal of the other, then	1					
	(A) b = c (B) a = b (C) ac = 1 (D) a = c						
5	The volume of a right circular cone whose area of the base is 156 cm ² and the vertical						
	height is 8 cm, is:						
	(A) 2496 cm ³ (B) 1248 cm ³						
	(C) 1664 cm ³ (D) 416 \overline{cm}^3						
6	The circumferences of two circles are in the ratio 4 : 5. What is the ratio of their radii ?	1					
	(A) 16:25 (B) 4:5 (C) $2:\sqrt{5}$ (D) 25:16						

/	If the perimeter of a semi-circular protractor is 26 cm, then its diameter is	1					
	(A) 10 cm (B) 14 cm (C) 12 cm (D) 16 cm	1					
8	From an external point Q, the length of tangent to a circle is 12 cm and the distance of	1					
	Q from the centre of circle is 13 cm. The radius of circle (in cm) is						
	(A) 5 (B) 10 (C) 12 (D)7						
9	A tree casts a shadow 15 m long on the level of ground, when the angle of elevation of	1					
	the sun is 45 ⁰ . The height of a tree is						
	(A) 10 cm (B) 14 cm (C) 8 cm (D) 15 cm						
10	For A = 30° , the value of 2 sinA cosA is	1					
	(A)1 (B) $\frac{\sqrt{3}}{\sqrt{3}}$ (C) $\frac{\sqrt{3}}{\sqrt{3}}$ (D) $\frac{3}{\sqrt{3}}$						
11	If sinA – $\cos A = 0$, then the value of $(\sin^4 A + \cos^4 A)$ is	1					
	(A) 1 (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$						
12		1					
	If $\sin \alpha = \frac{-1}{2}$ and $\cos \beta = \frac{-1}{2}$, then the value ($\alpha + \beta$) is						
	(A) 90° (B) 30° (C) 60° (D) 0°						
13	The point of intersection of the line represented by $3x - y = 3$ and y -axis is given by	1					
	(A) $(0, -3)$ (B) $(0, 3)$ (C) $(2, 0)$ (D) $(-2, 0)$						
14	The distance between the points ($cos \Lambda sin \Lambda$) and $(sin \Lambda - cos \Lambda)$ is	1					
	$\frac{1}{\sqrt{2}}$						
15	$(A) \sqrt{5}$ (B) $\sqrt{2}$ (C) 2 (D) 1 One card is drawn at random from a well shuffled deck of 52 playing cards. The	1					
15	probability that it is a red ace card, is	-					
	(A) $\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{1}{2}$						
	$(1)_{13}$ $(2)_{2}$ $(2)_{26}$ $(2)_{52}$						
16	In the given figure, DE II BC. If AD = 3 cm, AB = 7 cm and EC = 3 cm, then the length of						
	AE is						
	AE is						
	AE is						
	AE is						
	AE is						
	AE is $B = C$						
17	AE is P P P P E C (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(E, E) is at a distance of						
17	AE is B = C (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin	1					
17	AE is P P P P P P P P	1					
17	AE is B = C (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin (C) 61 units from origin (D) 11 units from origin The largest number which divides 70 and 125 leaving remainders 5 and 8 respectively is	1					
17	AE is B B B C (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin (C) 61 units from origin (D) 11 units from origin The largest number which divides 70 and 125 , leaving remainders 5 and 8 respectively is (A) 13 (B) 9 (C) 3 (D) 585	1					
17 18 19	AE is B = C (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin (C) 61 units from origin (D) 11 units from origin The largest number which divides 70 and 125 ,leaving remainders 5 and 8 respectively is (A) 13 (B) 9 (C) 3 (D) 585 Assertion (A) : If n th term of an AP is 7 - 4n, then its common differences is -4.	1					
17 18 19	AE is B = C (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin (C) 61 units from origin (D) 11 units from origin The largest number which divides 70 and 125 ,leaving remainders 5 and 8 respectively is (A) 13 (B) 9 (C) 3 (D) 585 Assertion (A) : If n th term of an AP is 7 - 4n, then its common differences is -4. Reason (R) : Common difference of an AP is given by d = a(n+1) - a_n.	1					
17 18 19	AE is P = P	1					
17 18 19	AE is P = P = P = P = P = P = P = P = P = P =	1					
17 18 19	AE is AE	1					
17 18 19	AE is AE is (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin (C) 61 units from origin (D) 11 units from origin The largest number which divides 70 and 125 , leaving remainders 5 and 8 respectively is (A) 13 (B) 9 (C) 3 (D) 585 Assertion (A) : If n th term of an AP is 7 - 4n, then its common differences is -4. Reason (R) : Common difference of an AP is given by d = $a_{(n+1)} - a_n$. (A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A)	1					
17 18 19	AE is (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin (C) 61 units from origin (D) 11 units from origin The largest number which divides 70 and 125 , leaving remainders 5 and 8 respectively is (A) 13 (B) 9 (C) 3 (D) 585 Assertion (A) : If n th term of an AP is 7 - 4n, then its common differences is -4. Reason (R) : Common difference of an AP is given by $d = a_{(n+1)} - a_n$. (A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A) (C) Assertion (A) is true but reason (R) is false	1					
17 18 19	AE is (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin (C) 61 units from origin (D) 11 units from origin The largest number which divides 70 and 125 , leaving remainders 5 and 8 respectively is (A) 13 (B) 9 (C) 3 (D) 585 Assertion (A) : If n th term of an AP is 7 - 4n, then its common differences is -4. Reason (R) : Common difference of an AP is given by $d = a_{(n+1)} - a_n$. (A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A) (C) Assertion (A) is true but reason (R) is false (D) Assertion (A) is false but reason (R) is true	1					
17 18 19 20	AE is AE is (A) 2 cm (B) 2.25 cm (C) 3.5cm (D) 4cm The point A(-5,6) is at a distance of (A) $\sqrt{61}$ units from origin (B) $\sqrt{11}$ units from origin (C) 61 units from origin (D) 11 units from origin The largest number which divides 70 and 125 , leaving remainders 5 and 8 respectively is (A) 13 (B) 9 (C) 3 (D) 585 Assertion (A) : If n th term of an AP is 7 - 4n, then its common differences is -4. Reason (R) : Common difference of an AP is given by d = $a_{(n+1)} - a_n$. (A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (B) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A) (C) Assertion (A) is true but reason (R) is false (D) Assertion (A) is false but reason (R) is true Assertion(A) : Two identical solid cube of side 5cm are joined end to end. Then total						

	Reason(R) : Total surface area of a cuboid is 2(lb + bh + lh).							
	(A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation							
	of assertion (A) (B) Both assertion (A) and reason (B) are true but reason (B) is not the correct							
	(B) Both assertion (A) and reason (R) are true but reason (R) is not the correct							
	(C) Assertion (A) is true but reason (B) is false							
	(D) Assertion (A) is false but reason (R) is true							
	SECTION B							
	SECTION B CONSISTS OF 5 QUESTIONS OF 2 MARKS EACH							
21	In the given fig. PA and PB are tangents to the circle from an external point P.CD is	2						
	another tangent touching the circle at question .If PA = 12 cm , QC = QD = 3cm , then							
	find PC + PD .							
	A C							
	B D							
22	If α and β be the zeroes of the polynomial f(x) = kx ² + 2x - 15, such that $\alpha^{2} + \beta^{2} =$	2						
	34 .Then find the value of k .	<u> </u>						
23 (A)	A norse is tethered to one corner of a rectangular field of dimensions 70m x 52m, by a	2						
	rope of length 21 m. How much area of the field can it graze?							
	OR							
23(B)	In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find the area	2						
(-)	of sector formed by the arc.							
24	If two adjacent vertices of parallelogram are (3,2) and (-1,0) and the diagonals	2						
	intersect at (2,-5), then find the coordinates of the two other vertices.							
25(A)	If AD and PM are medians of triangles ABC and PQR, respectively where Δ ABC ~ Δ PQR,	2						
	prove that $\frac{AB}{PQ} = \frac{AD}{PM}$							
	OR							
25(B)	If $\angle 1 = \angle 2$ and $\Delta NSQ \cong \Delta MTR$, then prove that $\Delta PTS \sim \Delta PRQ$	2						
	THINK KEY(JND)							
		_						
	JCAHONAL INSTITUT							
	M Q R N							
	SECTION C							
	SECTION C CONSISTS OF 6 QUESTIONS OF 3 MARKS EACH							
26(A)	If x = r SinACosC; y = r SinASinC and z = r CosA, Prove that: $x^2 + y^2 + z^2 = r^2$.	3						
· ·	OR Secol + 1							
26(B)	Prove that: $(\text{Cosec } \theta + \text{Cot } \theta)^2 = \frac{\sec \theta + 1}{\sec \theta - 1}$	3						
27(A)	Find the median of the following data :	3						
X-7	Marks Less Less Less Less Less Less Less] _						
	than than than than than than than than							
	10 20 30 40 50 60 70 80							
	Frequency 0 10 25 43 65 87 96 100							
	OR							

27(B)	If the mediar	n of the	following	distributi	on is 46. f	ind the m	issing free	ouencies r	p and g.	3
(-)	Class	10 -	20-30	30-40	40-50	50-60	60-70	70-80	Total	
	intervals	20								
	Frequency	12	30	х	65	y	25	18		
20		loflond	th 8 cm o	facirclo	of radius 5	cm Tho	tangonts	at R and C	intersect	2
20	PQ is a chord of length δ cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T. Find the length of the tangent TP								5	
	S cm									
	T R O)								
							• -			_
29	In the fig. a s	quare C	DABC is ins	scribed in	a quadrar	nt OPBQ .I	f OA = 15	cm , find	the area of	3
	the shaded r	egion .($\pi = 3.14$	·)						
	TITLE	TUTUT								
	Q	P								
	c	A								
		15 en								
	ŏ	Y								
30	All red face o	ards ar	e removed	l from a r	ack of pla	ving card	. The rem	naining ca	rds are	3
50	well shuffled	and th	en a card i	is drawn a	at random	from the	m. Find th	ne probab	ility that	
	the drawn ca	ard is:								
	(i) a red card		(ii) a face	card (iii) a card	of clubs				
31	Prove that a	m + n + an	n-n = 2am					7		3
		10	TI	S	ECTION D		7			
	1	SECTI	ON D CON	ISISTS OF	4 QUESTI	ONS OF 5	MARKS E	ACH		
32(A)	How many terms of the Arithmetic Progression 45, 39, 33, must be taken so that their							5		
	sum is 180?	Explain	the doubl	e answer.			<u> </u>			
		-	TITLE T	3 117	OR	e li Di				
32(B)	The sum of f	our con	secutive n	iumbers i	n an AP is	32 and th	e ratio of	the produ	ict of the	5
22/11	Instand the	Foo km	m to the p	ft was clo	two mide	ne terms	IS 7:15. FII	or The ou	mbers.	
55(A)	speed of the	trip wa	, an an cra s roducod	by 200 k	weu uowi m/hr and	the time of	au weath of flight in	crossed b	v 30	3
	minutes Fin	d the di	ration of	the flight	nym anu		J Ingilt III	cieaseu b	y 30	F
	minuces. rin	a the at		the ingite	OR					-
33(B)	Find the values of k for which the equation $(3k + 1)x^2 + 2(k + 1)x + 1 = 0$ has equal							5		
(-)	roots. Also fi	nd the i	roots.			_,(.	_,		-1 - · · ·	-
34	Sides AB, AC	and me	dian AD c	of a ∆ABC	are respe	ctively pro	oportiona	l to sides	PQ,PR and	5
	median PS o	fanothe	er triangle	PQR .Sho	w that ΔA	ABC ~ ΔP	QR		-,	
35	The angle of	elevatio	on of a clo	ud from a	a point 20	0m above	the lake i	is 30 ⁰ and	the angle	5
	of depressio	n of the	reflectior	n of the cl	oud in the	lake is 60) ^{o ,} find th	e height d	of the	
	cloud above	the lake	e?							
				S	ECTION E.					
36	In a coffee sh	nop, cof	fee is serv	ed in two	types of	cups. One	is cylindr	ical in sha	pe with	
	diameter 7 c	m and h	neight 14 d	cm and th	e other is	hemisphe	erical with	diamete	r 21 cm.	
	1									1

	Based on the above information, solve the following questions: (use π = 22/7)					
(1)	Find the area of the base of the cylindrical cup.	1				
(II)(A)	(a) What is the capacity of the hemispherical cup?	1				
	OR					
(II)(B)	Find the capacity of the cylindrical cup.	1				
(111)	what is the curved surface area of the cylindrical cup?	2				
37	A leading LED TV manufacturing company manufactures 18000 LED TVs in the second					
	year and 19800 LED Tvs in tenth year. Assuming that the company increases the					
	manufacturing of LED TV uniformly every year by fixed numbers.					
	Parad on the above answer the following :					
(1)	Based on the above answer the following :	1				
<u>()</u> ())	How many LED TV's were manufactured in the seventh year?	 1				
<u>(")</u> (ΠΙ)(Δ)	How many LED TVs were manufactured in the seventh year :	2				
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OR	2				
(111)	If company is 12 year old, find number of LED TVs produced in last 3 years.	2				
(B)						
38	Rahul and Ravi planned to play Business (board game) in which they were supposed to					
	use two dice.					
	SSEINISNE					
(I)	Ravi got first chance to roll the dice. What is the probability that he got the sum of the	1				
	two numbers appearing on the top face of the dice is 8?					
(II)	Rahul got next chance. What is the probability that he got the sum of the two numbers	1				
-	appearing on the top face of the dice is 13?					
(III)(A)	Now it was Ravi's turn. He rolled the dice. What is the probability that he got the sum of					
-	the two numbers appearing on the top face of the dice is less than or equal to 12?					
	OR					
	Now it was Rahul's turn. He rolled the dice. What is the probability that he got the sum	2				
	of the two numbers appearing on the top face of the dice is greater than 8?					
(III)(B)	or the two numbers uppearing on the top face of the face is greater than of					

To get more sample papers, practice papers, study material (Only for Maths CBSE IX-X)Join my whatsapp group at <u>https://chat.whatsapp.com/HTcfeKqE4wN8075HOehy0t</u>