SET - 1(A)

केंद्रीय विद्यालय संगठन, अहमदाबाद संभाग KENDRIYA VIDYALAYA SANGATHAN, AHMEDABAD REGION

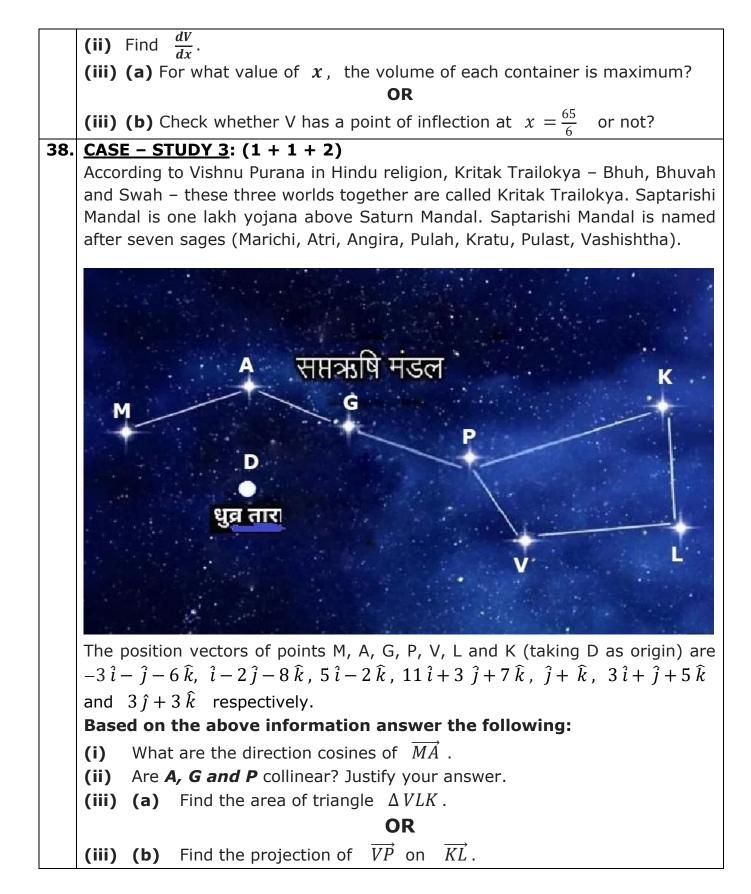
प्री – बोर्ड परीक्षा: 2024 – 25

PRE - BOARD EXAMINATION: 2024 - 25

SUBJECT : MATHEMATICS (041) CLASS : XII TIME: 3 HOURS MAX. MARKS: 80

General Instructions:

- **1.** This Question paper contains **five sections A, B, C, D and E.** Each section is compulsory. However, there are internal choices in some questions.
- Section A has 20 MCQ's, 18 Very Short Answer (Type 1) and 02 Assertion – Reason based questions of 1 mark each.
- Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA) type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions of 5 marks each.
- 6. Section E has 3 source based/ case based / passage based/integrated units of assessment (4 marks each) with sub parts.


		SECTION	I – A				
1.	The solution of the differential equation $2x \frac{dy}{dx} - y = 3$ represents:						
	(a)	circle (b)	straight lines				
	(c)	ellipse (d)	parabolas				
2.	The degree of the differential equation $\left\{5 + \left(\frac{dy}{dx}\right)^2\right\}^{5/3} = x^5 \left(\frac{d^2y}{dx^2}\right)$ is:						
	(a)	4 (b)					
	(c)	10 (d)	Not defined				
3.	The principal value of $cos^{-1}\left(-\sin\frac{7\pi}{6}\right)$ is:						
	(a) (c)	$\frac{5\pi}{3}$ (b)	$\frac{7\pi}{6}$				
	(c)	$\frac{\pi}{3}$ (d)	$-\frac{\pi}{3}$				
4.	The I	number of all possible matrices of	order 3×3 with each entry 0 or 1 or				
	– 1 is	5:					
	(a)	27 (b)	3 ⁶				
	(c)	3 ⁹ (d)	81				
5.	If A	$= \begin{bmatrix} x & 1 \\ -1 & -x \end{bmatrix}$ such that $A^2 = 0$,	then $x =$				
	(a)	1 (b)	<u>+</u> 1				
	(c)	0 (d)	1				

6.	The vector equation of the line pa	assing through the point $(2, -3, 4)$ and						
	parallel to the line $\frac{x-3}{2} = \frac{2y-1}{4}$	$r = \frac{2 - z}{z}$ is:						
	(a) $\vec{r} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k} + \omega(2\hat{\imath} + 2\hat{\jmath} + 5\hat{k})$							
	(b) $\vec{r} = 2\hat{\imath} + 2\hat{\jmath} + 5\hat{k} + \omega(2\hat{\imath} - 3\hat{\jmath} + 4\hat{k})$							
	(c) $\vec{r} = 2\hat{\imath} + 4\hat{\jmath} - 5\hat{k} + \omega(2\hat{\imath} - 3\hat{\jmath} + 4\hat{k})$							
	(d) $\vec{r} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k} + \omega(2\hat{\imath})$	$(4\hat{j} - 5\hat{k})$						
7.	If $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & a & 1 \end{bmatrix}$ is a non – sing	Jular matrix and $a \in A$, then the set A is:						
	(a) <i>R</i>	(b) {0}						
	(c) {4}	(d) $R - \{4\}$						
8.	The general solution of the different	ntial equation $\frac{dy}{dx} = e^{x + y}$ is:						
	(a) $e^x + e^{-y} = C$	(b) $e^x + e^y = C$						
		(d) $e^{-x} + e^{y} = C$						
9.	If $sin(x+y) = log(x+y)$ the	en $\frac{dy}{dx} =$						
	(a) 2	(b) – 2						
	(c) - 1	(d) 1						
10.		a circle is equal to the rate of change of its						
	diameter, then its radius is equal t							
	(a) $\frac{2}{\pi}$ units	(b) $\frac{1}{\pi}$ unit						
	(c) $\frac{\pi}{2}$ units	(d) <i>π units</i>						
11.		-by of an LPP has maximum value 42 at (2, 2) Which of the following is true?						
		(3, 2). Which of the following is true? (b) $a = 5$, $b = 2$						
		(d) $a = 5$, $b = 3$						
12.		sfy both the inequations $2x + y \le 10$ and						
	$x + 2 y \ge 8 ?$							
	(a) (-2, 4)	(b) (3, 2)						
	(c) $(-5, 6)$ The value of $\int \frac{2}{(e^x + e^{-x})^2} dx$ is:	(d) (4, 2)						
13.	The value of $\int \frac{2}{(e^x + e^{-x})^2} dx$ is:							
	(a) $\frac{-e^{-x}}{e^x + e^{-x}} + C$	(b) $-\frac{1}{e^x+e^{-x}}+C$						
	(c) $-\frac{1}{(e^x + 1)^2} + C$							
14.	The value of $\int \frac{x+3}{(x+4)^2} e^x dx$ is:							
	(a) $\frac{e^x}{x+4} + C$	(b) $\frac{e^x}{x+3} + C$						
1		(d) $\frac{e^x}{(x+4)^2} + C$						
	(c) $\frac{1}{(x+4)^2} + C$	$(x + 4)^2$						

15.	The v	alue of	$\int rac{\cos \sqrt{x}}{\sqrt{x}} dx$ is	:					
	(a)	$2\cos\sqrt{2}$	$\overline{x} + C$	(b)	$\sqrt{\frac{\cos x}{x}} + C$				
	(c)	$\sin \sqrt{x}$ -	+ <i>C</i>	(d)	$2\sin\sqrt{x} + C$				
16.	The \	alue of	$\int_{0}^{1} x \sqrt{1-x} dx$	lx is:					
	(a)	$\frac{2}{15}$	C C C C C C C C C C C C C C C C C C C	(b)	$\frac{4}{15}$				
		$-\frac{2}{15}$		(d)	$-\frac{4}{15}$				
17.	The	function	f(x) = x - [x]	[], where	[x] denotes the greatest integer				
		ion, is:							
	(a) continuous everywhere(b) continuous at integer points only								
	(c) continuous at non – integer points only								
18.			tiable everywh		ivides the join of points with position				
10.					ivides the join of points with position $2 : 1$ externally, is:				
	(a)	$\frac{3\vec{a} + 2\vec{b}}{2}$			$3(\vec{a}-\vec{b})$				
	(c)	$\frac{5\vec{a}-\vec{b}}{3}$			$\frac{4\vec{a}+\vec{b}}{3}$				
			ASSERT:	ION – REAS	SON QUESTIONS				
	Each of these questions contains two statements, Assertion and Reason . Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below.								
	(a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.								
	(b) Assertion is correct, reason is correct; reason is not a correct								
	explanation for assertion.								
	(c)		on is correct, re		rrect.				
	(d) Assertion is incorrect, reason is correct.								
19.					ch the two vectors $2\hat{i} - \hat{j} + 3\hat{k}$ and				
	$-4 \hat{i} + \lambda \hat{j} - 6 \hat{k}$ are parallel is 2. Reason (R): Two vectors \vec{a} and \vec{b} are collinear, then $\vec{a} \times \vec{b} = \vec{0}$.								
20									
20.					events A and B, if $P(A) = \frac{2}{3}$ and				
	P (B)	$)=rac{1}{5}, th$	ten $P(\bar{A} \cup \bar{B})$	$=\frac{13}{15}$.					
	Reason (R): For two independent events A and B, \overline{A} and \overline{B} need not to be independent.								

	SECTION – B								
21.	Find the interval for which $f(x) = x^4 - 2x^2$ is strictly increasing.								
22.	Find the principal value of $cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) + sin^{-1}\left\{sin\left(\frac{17\pi}{6}\right)\right\} + tan^{-1}(-1)$								
		_	_	15.0		OR			
	Find the c	domair	n of <i>cu</i>	$bs^{-1}[x^2]$	- 9] .				
23.	If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, prove that $2x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}$.								
24.	If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, prove that $A^2 - A + 2I = 0$.								
	L4 –2J LU IJ OR								
	Write $A = \begin{bmatrix} 5 & 1 \\ -6 & 8 \end{bmatrix}$ as sum of a symmetric and a skew – symmetric matrix.								
25		- 0	0-						
25.	If $\vec{a} = 5 \hat{\imath} + \lambda \hat{\jmath} - 3 \hat{k}$ and $\vec{b} = \hat{\imath} + 3 \hat{\jmath} - 5 \hat{k}$, then find the value of λ ,								
	so that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular vectors.								
					SECTIO				2
26.	Integrate: $\int \frac{x+3}{\sqrt{5-x-2x^2}} dx$ OR Integrate: $\int \frac{1-x^2}{x(1-2x)} dx$								
27.	A random variable X has the following probability distribution:								
	X	0	1	2	3	4	5	6	7
	$P(X)$ 0 k 2 k 2 k 3 k k^2 2 k^2 7 $k^2 + k$							$7 k^2 + k$	
	Find $P(0 < X < 5)$.								
28.	Integrate	$: \int_{0}^{\pi/2}$	2 (cos x	-dx				
29						na Proble	m graph	ically:	
	Solve the following Linear Programming Problem graphically: Minimize $Z = 20 x + 10 y$								
	subject to the constraints:								
	$x + 2y \le 40$, $3x + y \ge 30$, $4x + 3y \ge 60$, $x \ge 0, y \ge 0$.								
30.	If $(\cos x)^y = (\sin y)^x$, then find $\frac{dy}{dx}$.								
	OR								
	Differentia	Differentiate $tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $sin^{-1}\left(\frac{2x}{1+x^2}\right)$, if							
	$-1 < x < 1$, $x \neq 0$.								
31.									
	OR Solve the differential equation: $y dx + (x - y^3) dy = 0$								

SECTION – D							
If $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 1 \\ 0 & 4 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -4 & 2 \\ 2 & 2 & -1 \\ -4 & -4 & 5 \end{bmatrix}$ are two square matrices, find							
$L 0 4 2J \qquad L-4 -4 5 J$ AB and hence solve the following system of linear equations:							
<i>x</i> - y = 3, $2x + 3y + 4z = 17$, $y + 2z = 7$							
x - y - 3, $2x + 3y + 42 - 17$, $y + 22 - 7Draw the rough sketch of curves y = 1 + x + 2 , x = -3, x = 3 and$							
y=0 . Find the area bounded by the curves $y=1+ x+2 $, $x=-3$, $x=3$							
and $y = 0$.							
Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. Also write							
the equation of the line joining the given point and its image and find the length of the line – segment joining the given point and its image.							
OR							
Find the shortest distance between lines whose Cartesian equations are given							
by $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ and $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$. Also, find the equation							
of the line determining the shortest distance.							
Let $f : N \cup \{0\} \to N \cup \{0\}$ be a function defined as							
$f(x) = \begin{cases} n+1 & \text{, if } n \text{ is even} \\ n-1 & \text{, if } n \text{ is odd} \end{cases}$ Show that f is a bijection.							
OR							
Show that relation R on the set $A = \{x \in Z : 0 \le x \le 20\}$, given by							
$R = \{(a, b): a - b is a multiple of 4\}$ is an equivalence relation. Find the							
set of all elements related to 3.							
SECTION – E							
<u>CASE – STUDY 1</u> : (2 + 2)							
A shopkeeper sells three types of flower seeds A_1 , A_2 , A_3 . They are sold in							
the form of a mixture, where the proportions of these seeds are $4:5:3$							
respectively. The germination rates of the three types of seeds are 45% ,							
60 <i>and</i> 35% respectively. Based on the above information, calculate the probability that:							
(i) a randomly chosen seed will germinate.							
(ii) the seed is of the type A_2 , given that a randomly chosen seed							
germinates.							
<u>CASE – STUDY 2</u> : (1 + 1 + 2)							
Ramesh, the owner of a sweet selling shop, purchased some rectangular card							
board sheets of dimension $25 cm by 40 cm$ to make container packets							
without top. Let $x \ cm$ be the length of the side of the square to be cut out							
from each corner to give that sheet the shape of the container by folding up the flaps.							
Based on the above information answer the following:							
(i) Express the volume (V) of each container as function of x only.							

