

AN EDUCATIONAL INSTITUTE

SUBJECT:MATHS DATE :23/11/24

PBMT-04 UNIT - 4 VECTOR & 3D Ch - 10 Vector algebra Ch - 11 3D MAX. MARKS : 40 DURATION : 60 MIN

General Instruction:

This Question Paper has 5 Sections A-E.

1. Section A has 6 MCQs carrying 1 mark each.

2. Section **B** has 3 questions carrying 02 marks each.

3. Section C has 3 questions carrying 03 marks each.

4. Section **D** has 1 questions carrying 04 marks each.

5. Section E has 3 questions carrying 05 marks each.

Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION – A

Questions 1 to 6 carry 1 mark each.

1. The lines $\vec{r} = \hat{\imath} + \hat{\jmath} - \hat{k} + \lambda(2\hat{\imath} + 3\hat{\jmath} - 6\hat{k})$ and $\vec{r} = 2\hat{\imath} - \hat{\jmath} + \hat{k} + \mu(6\hat{\imath} + 9\hat{\jmath} - 18\hat{k})$ are (a) coincident (b) skew (c) intersecting (d) parallel

2. The equation of the line in vector from passing through the point (-1,3,5) and parallel to the line $\frac{x-3}{2} = \frac{y-4}{3}$, z = 2 is

(a) $\vec{r} = -\hat{\imath} + 3\hat{\jmath} + 5\hat{k} + t(2\hat{\imath} + 3\hat{\jmath} + \hat{k})$ (b) $\vec{r} = -\hat{\imath} + 3\hat{\jmath} + 5\hat{k} + t(2\hat{\imath} + 3\hat{\jmath}))$ (c) $\vec{r} = 2\hat{\imath} + 3\hat{\jmath} - 2\hat{k} + t(-\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$ (d) $\vec{r} = 2\hat{\imath} + 3\hat{\jmath} + t(-\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$

3. If the position vectors of P and Q are $\hat{i} + 3\hat{j} - 7\hat{k}$ and $5\hat{i} - 2\hat{j} + 4\hat{k}$ respectively ,then the cosine of the angle between \overrightarrow{PQ} and y – axis is (a) $\frac{4}{\sqrt{162}}$ (b) $\frac{11}{\sqrt{162}}$ (c) $\frac{5}{\sqrt{162}}$ (d) $-\frac{5}{\sqrt{162}}$

4. The number of vectors of unit length perpendicular to the vectors $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$ (a) three (b) infinite (c) two (d) one

5. Let \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $|\vec{a} + \vec{b} + \vec{c}| = 1$ and \vec{a} is perpendicular to \vec{b} . If \vec{c} makes angle α and β with \vec{a} and \vec{b} respectively, then $\cos \alpha + \cos \beta =$ (a) -1 (b) $\frac{3}{2}$ (c) $-\frac{3}{2}$ (d) 1

6. Assertion (A) : Acute angle between the vectors $\hat{i} + \hat{j} - k$ and $2\hat{i} + 3k$ is $\cos^{-1}\left(\frac{1}{\sqrt{39}}\right)$.

Reason (R) : For vectors \vec{a} and \vec{b} , the acute angle between them is, $\cos^{-1}\left(\frac{|\vec{a}.\vec{b}|}{|\vec{a}||\vec{b}|}\right)$.

(a) Both A and R are true and R is the correct explanation of A.

(b) Both A and R are true and R is not the correct explanation of A.

(c) A is true but R is false.

(d) A is false but R is true.

SECTION – B Questions 7 to 9 carry 2 mark each.

7. ABCDEF is a regular hexagon, $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{BC} = \vec{b}$ and $\vec{CD} = \vec{c}$, find \overrightarrow{AE} .

8. An aeroplane is flying along the line $\vec{r} = \lambda(\hat{\imath} - \hat{\jmath} + \hat{k})$ where λ is a scalar and another aeroplane is flying along the line $\vec{r} = \hat{\imath} - \hat{\jmath} + \mu(-2\hat{\jmath} + \hat{k})$ where μ is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.

9. If $\vec{a} = 2\hat{\imath} - \hat{\jmath}$ and $\vec{b} = 3\hat{\imath} + 2\hat{k}$, find $|\vec{a} + \vec{b}|$.

Or

If \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = |\vec{b}| = \sqrt{2}$ and $\vec{a} \cdot \vec{b} = -1$, find the angle between \vec{a} and \vec{b} .

SECTION – C Questions 10 to 12 carry 3 mark each.

10. If \vec{a} and \vec{b} are unit vectors , then what is the angle between \vec{a} and \vec{b} so that $\sqrt{2} \vec{a} - \vec{b}$ is a unit vector ?

11. If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors of equal magnitude ,then prove that the vector $(2\vec{a} + \vec{b} + 2\vec{c})$ is equally inclined to both \vec{a} and \vec{c} . Also , find angle between \vec{a} and $(2\vec{a} + \vec{b} + 2\vec{c})$.

12. The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ and hence find the unit vector along $\vec{b} + \vec{c}$.

SECTION – D Questions 13 carry 4 mark each.

13. Read the following passage and answer the questions given below: Teams A, B, C went for playing a tug of war game. Teams A, B, C have attached a rope to a metal ring and is trying to pull the ring into their own area.

Team A pulls with force $F1 = 6\hat{\imath} + 0\hat{\jmath}kN$, Team B pulls with force $F2 = -4\hat{\imath} + 4\hat{\jmath}kN$, Team C pulls with force $F3 = -3\hat{\imath} - 3\hat{\jmath}kN$

(i) What is the magnitude of the force of Team A ?(ii) Which team will win the game?

(iii) Find the magnitude of the resultant force exerted by the teams.

OR

(iii) In what direction is the ring getting pulled?

SECTION – E Questions 14 to 16 carry 5 mark each

14. An aeroplane is flying along the line $\vec{r} = \lambda(\tilde{\imath} - \tilde{\jmath} + \tilde{k})$ where λ is a scalar and another aeroplane is flying along the line $\vec{r} = \tilde{\imath} - \tilde{\jmath} + \mu(-2\tilde{\jmath} + \tilde{k})$ where μ is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.

Show that the lines $\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1}$ and $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-4}{2}$ intersect . Also, find the coordinates of the point of intersection.

15. Find the value of 't' for which the following lines are perpendicular to each other :

 $\frac{x-5}{5t+2} = \frac{2-y}{5} = \frac{1-z}{-1}; \frac{x}{1} = \frac{y+\frac{1}{2}}{2t} = \frac{z-1}{3}.$ Hence ,find whether the lines intersect or not .

16. Find the image of the point (2, -1, 5) in the line $\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11}$. Also find the equation of the line joining the given point and its image . Find the length of that line segment also .

End

To get more sample papers, practice papers, study material (Only for Maths CBSE XI-XII)Join my whatsapp group at https://chat.whatsapp.com/L3RcA9CYQJ5CXAw8fk2PpF

INFINITY THINK BEYOND....

AN EDUCATIONAL INSTITUTE