

## CBSE Class XI Mathematics Sample Paper 02 As per pattern issued by CBSE for (2023-24)

#### Maximum Marks : 80

Time: 3 hrs.

**General Instructions :** 

1. This Question Paper has 5 Sections A-E.

2. Section A has 20 MCQs carrying 1 mark each

3. Section B has 5 questions carrying 02 marks each.

4. Section C has 6 questions carrying 03 marks each.

5. Section D has 3 case based integrated units of assessment (04 marks each) with subparts of the values

of 1, 1 and 2 marks each respectively.

6. Section E has 4 questions carrying 05 marks each.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs

of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has

been provided in the 2marks questions of Section E

8. Draw neat figures wherever required. Take  $\pi = 22/7$  wherever required if not stated.

### SECTION A ( Question 1 to 20 carry 1 mark )

**Q1**. Total number of elements in the power set of A containing 15 elements is

| a)2 <sup>15</sup>      |         | b) 15 <sup>2</sup> |
|------------------------|---------|--------------------|
| c) 2 <sup>15</sup> - 1 | THIM DI | d) $2^{15} - 1$    |

**Q2.** If  $((1 - i)^4 = a + ib$  then the value of a and b are respectively

| a)-4,0 | b) 0,-4 |
|--------|---------|
| c)4,0  | d) 0,4  |

**Q3.** If a relation R is defined on the set Z of integers as follows  $(a, b) \in R \Leftrightarrow a^2 + b^2 = 25$ , domain is

| a){3,4,5}                       | b) {0,3,4,5}    |
|---------------------------------|-----------------|
| c) $\{0, \pm 3, \pm 4, \pm 5\}$ | d)None of these |

**Q4**. If G represents the name of the function in given graph, then G is a/an



| a)identity function | b) constant function |
|---------------------|----------------------|
| c)modulus function  | d)none of these      |

Q5.Range of tan x

| a)R     | b)R- (-1,1) |
|---------|-------------|
| c)R-{0} | d)R-{1,-1}  |

**Q6**. The sum of first three terms of a GP is 13 /12 and their product is –1then the common ratio of the GP is :

| a)-4/3 or -3/4 | b) ¾ or 4/3   |
|----------------|---------------|
| c)1/4 or -1/4  | d)5/3 or -3/5 |

**Q7**. Let A = {x: x is a square of a natural number and x is less than 100} and B is a set of even natural numbers. The cardinality of  $A \cap B$  is

| a)4 | b) 5            |
|-----|-----------------|
| c)9 | d)None of these |
|     |                 |

**Q8**. If (x+y)+i(x-y)=4+6i,then xy is

| a)5 | b) -5 |
|-----|-------|
| c)4 | d)-4  |

**Q9**. Slope of a line if angle of inclination with positive x axis is 135 degree.

| a)0 | b) not defined |
|-----|----------------|
| c)1 | d)-1           |
|     |                |

~

Q10. Gemoteric means between 3 and 96 are

| a)6,12,24,28 | THINK B        | b) 6,10,24,48 |  |
|--------------|----------------|---------------|--|
| c)6,10,40,48 | T YY Y FITT TA | d)48,24,10,5  |  |

# Q11. Find x if $\frac{x-2}{x+5} > 2$ DUCATIONAL INSTITUTE

| a)[-12,-5) | b) [-12,-5]     |
|------------|-----------------|
| c)(-12,-5) | d)none of these |

#### **Q12**. In a GP, the 3rd term is 24 and the 6th term is 192. Then, the 10th term is

| a)1084 | b) 3290 |
|--------|---------|
| c)3072 | d)2340  |

#### **Q13.** The total number of terms in expansion of $(n + a)^{100} + (n - a)^{100}$ after simplification is

| a)202 | b) 51           |
|-------|-----------------|
| c)50  | d)none of these |

# **Q14.** The value of $\lim_{x\to 2} \cdot \frac{x^{\eta}-2^n}{x-2} = 80$ , n is equal to

| a)1 | b) 3 |
|-----|------|
| c)5 | d)7  |

#### **Q15**. The points A(x,4), B(3,-2), C(4,-5) are collinear in the value of x

| a)1 | b) -1 |
|-----|-------|
| c)2 | d)0   |

#### **Q16**. Approx value $(1 \cdot 1)^{10000}$ is

| a)greater than 1000 | b) less than 1000 |
|---------------------|-------------------|
| c)equal to 1000     | d)none of these   |

#### Q17. The number of permutation of word 'MESMERISE' is

| a) $\frac{9!}{(2!)^2(3!)}$ | b) $\frac{9!}{(2!)^3(3!)}$ |
|----------------------------|----------------------------|
| $(c)\frac{9!}{(3!)^2(2!)}$ | d) $\frac{5!}{(2!)^2(3!)}$ |

## **Q18**. Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits

| these numbers. What is the probability that this number has the same digits |          |  |  |  |
|-----------------------------------------------------------------------------|----------|--|--|--|
| a)1/16                                                                      | b) 16/25 |  |  |  |
| c)1/65                                                                      | d)1/25   |  |  |  |

#### **Q19**. Assertion (A) The power set of the set $\{1, 2\}$ is the set $\{\phi, \{1\}, \{1,2\}, \{2\}\}$

Reason (R) The power set is set of all subsets of the set.

| a)Both assertion and reason are true and reason is | b)Both assertion and reason are true but reason is |  |  |
|----------------------------------------------------|----------------------------------------------------|--|--|
| the correct explanation of assertion               | not the correct explanation of assertion           |  |  |
| c)Assertion is true but reason is false.           | d) Assertion is false but reason is true.          |  |  |
|                                                    |                                                    |  |  |

IIIINA DEJIVAD.....

#### Q20. Assertion (A) Slope of line 3x-4y+10 =0 is 3 /4 .

| Reason (R) x-intercept and y-intercept of 3x-4y+10 = 0 respectively are - 10 /3 and 5 /2 . |                                                    |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| a)Both assertion and reason are true and reason is                                         | b)Both assertion and reason are true but reason is |  |  |
| the correct explanation of assertion                                                       | not the correct explanation of assertion           |  |  |
| c)Assertion is true but reason is false.                                                   | d) Assertion is false but reason is true.          |  |  |

### SECTION B ( Question 21 to 25 carry 2 mark )

**Q21**. Simplify  $(x^2 - y)^4 - (x^2 + y)^4$  using binomial expansion.

Q22. Prove that :



**Q23**. Find the derivative of f (x) =  $\overline{1 + \tan x}$ 

Or

Find the value of  $\lim_{x \to 1} \frac{(\sqrt{x}-1)(2x-3)}{2x^2+x-3}$ 

**Q24**. Prove that the points (0, -1, -7), (2, 1, -9) and (6, 5, -13) are collinear. Find the ratio in which the first point divides the join of the other two.

Or

Verify that : (-1, 2, 1), (1,-2, 5), (4, -7 8) and (2, -3, 4) are the vertices of a parallelogram.

Q25. Find the mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean?

SECTION C ( Question 26 to 31 carry 3 mark )

- Q26. Find the domain and range of signum function .Also draw its graph
- **Q27**. Find the distance of the point of intersection of the lines 2x-3y+5=0 and 3x+4y=0 from the line 5x-2y=0.

**Q.28**. If  $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = x + iy$ , then find x and y

- Q.29 Four cards are drawn at random from a pack of 52 cards. Find the probability of getting a) all the four cards of the same suit e) all cards of the same colour.
- Q.30. Find the equation of the circle passing through the point (-1, 3) and having its centre at the point of intersection of the lines x -2y = 4 and 2x+5y=1
- **Q.31.** Prove that  $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} \cos 60^{\circ} = \frac{1}{16}$

Prove that  $\cos \alpha + \cos \beta + \cos \gamma + \cos(\alpha + \beta + \gamma) = 4 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\beta + \gamma}{2}\right) \cos\left(\frac{\gamma + \alpha}{2}\right)$ 



**Q.32** During the Mathematics class, A teacher clears the concept of permutations and combinations to the 11<sup>th</sup> class students. After the class was over he asks the students some more questions :



On the basis of the information given above answer the following:-

- (a) Find the number of arrangements of the letters of the word INDEPENDENCE.
- (b) In How many of these do the words begin with I and end in P.
- (c) In How many of these do all the vowels never occur together.

OR

In How many of these do all the four E's do not occur together

**Q.33.** Three girls, Rani, Mansi, Sneha are talking to each other while maintaining a social distance due to covid-19. They are standing on vertices of a triangle, whose coordinates are given.



Q34. Four candidates A, B, C and D are applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given same chance of being selected, while c is twice as likely to be selected as D, what are the probabilities that



(a)Find the probability that A is selected(b)Find the probability that C is selected(c) Find the Probability that A is not selected or

Find the Probability that C is not selected

#### SECTION E ( Question 35 to 38 carry 5 mark )

Q35.Find the value of the expression

$$\cos^4\frac{\pi}{8} + \cos^4\frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}$$

Or

Prove that  $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$ 

Q36.A line is such that its segment between the straight lines 5x-y+4=0 and 3x+4y-4=0 is bisected at the point (1,5). Obtain its equation

Or

Assuming that straight lines work as the plane mirror for a point , find the image of the point (1,2) in the line x-3y+4=0.

**Q37**. Find the derivative of  $F(x) = x \sin x$  by first principal.

Q38. The diameters of circles (in mm) drawn in a design are given below :

| Diameters      | 33-36 | 37-40 | 41-44 | 45-48 | 49-52 |
|----------------|-------|-------|-------|-------|-------|
| No. of circles | 15    | 17    | 21    | 22    | 25    |

Calculate the standard deviation and mean diameter of the circles.

To get more sample papers, practice papers, study material (Only for Maths CBSE XI-XII) Join my whatsapp group at

AN EDUCATIONAL INSTITUT

https://chat.whatsapp.com/L3RcA9CYQJ5CXAw8fk2PpF

Mathematics XI - Mind Curve Practice Paper 02 Answer key By Deepika Bhati (2023-24)

**CBSE Class XI Mathematics Sample Paper 02 Answer key** 

#### SECTION – A ( Question number 1 to 20 carry 1 marks each )

|                                                                                                                                                                                                                                                  | •                                                       |                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|--|
|                                                                                                                                                                                                                                                  |                                                         |                                 |  |
| 01                                                                                                                                                                                                                                               |                                                         |                                 |  |
| 02                                                                                                                                                                                                                                               | A                                                       | —                               |  |
| 03                                                                                                                                                                                                                                               |                                                         | _                               |  |
| <u>Q</u> 3.                                                                                                                                                                                                                                      | C                                                       | _                               |  |
| Q4.<br>Of                                                                                                                                                                                                                                        |                                                         | _                               |  |
| <u>us.</u>                                                                                                                                                                                                                                       | A                                                       | _                               |  |
| <u>Q</u> 6.                                                                                                                                                                                                                                      | A                                                       | _                               |  |
| <u>ų/.</u>                                                                                                                                                                                                                                       | A                                                       | _                               |  |
| <u> </u>                                                                                                                                                                                                                                         | B                                                       | _                               |  |
| <u>Q9.</u>                                                                                                                                                                                                                                       | D                                                       | _                               |  |
| Q10.                                                                                                                                                                                                                                             | A                                                       | _                               |  |
| <u>Q11.</u>                                                                                                                                                                                                                                      | C                                                       | _                               |  |
| Q12.                                                                                                                                                                                                                                             | C                                                       | _                               |  |
| Q13.                                                                                                                                                                                                                                             | B                                                       | _                               |  |
| Q14.                                                                                                                                                                                                                                             | C                                                       | _                               |  |
| Q15.                                                                                                                                                                                                                                             | Α                                                       |                                 |  |
| Q16.                                                                                                                                                                                                                                             | A                                                       |                                 |  |
| Q17.                                                                                                                                                                                                                                             | Α                                                       |                                 |  |
| Q18.                                                                                                                                                                                                                                             | В                                                       |                                 |  |
| Q19.                                                                                                                                                                                                                                             | A                                                       |                                 |  |
| Q20.                                                                                                                                                                                                                                             | В                                                       |                                 |  |
|                                                                                                                                                                                                                                                  |                                                         |                                 |  |
|                                                                                                                                                                                                                                                  | SECTION                                                 |                                 |  |
|                                                                                                                                                                                                                                                  | (Question number 21 to                                  | o 25 carry 2 marks each )       |  |
| 21.Simplify $(x^2-y)^4$ -                                                                                                                                                                                                                        | $(x^2+y)^4$ using binomial $\epsilon$ $(x^2-y)^4 \cdot$ | expansion.<br>- $(x^2 + y)^4$   |  |
| (x <sup>8</sup> -8x <sup>6</sup> y+24x <sup>4</sup> y <sup>2</sup> -32x <sup>2</sup> y <sup>3</sup> +16y <sup>4</sup> )-( x <sup>8</sup> +8x <sup>6</sup> y+24x <sup>4</sup> y <sup>2</sup> +32x <sup>2</sup> y <sup>3</sup> +16y <sup>4</sup> ) |                                                         |                                 |  |
|                                                                                                                                                                                                                                                  | -16v <sup>6</sup> v                                     | 6Λν <sup>4</sup> ν <sup>2</sup> |  |
|                                                                                                                                                                                                                                                  | 10A y                                                   |                                 |  |
| <b>22.Prove that :</b> $\frac{1+\sin x}{1+\sin x}$                                                                                                                                                                                               | $\frac{x - \cos x}{x + \cos x} = \tan \frac{x}{2}$      |                                 |  |
| Ans                                                                                                                                                                                                                                              |                                                         |                                 |  |
|                                                                                                                                                                                                                                                  |                                                         |                                 |  |

$$LHS = \frac{1 + \sin x - \cos x}{1 + \cos x + \sin x}$$
$$= \frac{\sin x(1 + \sin x - \cos x)}{\sin x(1 + \cos x) + \sin^2 x}$$
$$= \frac{\sin x(1 + \sin x - \cos x)}{\sin x(1 + \cos x) + (1 - \cos^2 x)}$$
$$= \frac{\sin x(1 + \sin x - \cos x)}{(1 + \cos x)(\sin x + 1 - \cos x)}$$
$$= \frac{\sin x}{1 + \cos x}$$
$$= \frac{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)}$$
$$= \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}$$
$$= \tan\left(\frac{x}{2}\right)$$
e derivative of f (x) =  $\frac{x}{1 + \tan x}$ 

Q23.Find the

F'(x) = 
$$\frac{1 + \tan x - x \sec^2 x}{(1 + \tan x)^2}$$

Or

Find the value of  $\lim_{x\to 1} \frac{(\sqrt{x}-1)(2x-3)}{2x^2+x-3}$ 

$$\lim_{x \to 1} \left[ \frac{(2x-3)(\sqrt{x}-1)}{2x^2 + x - 3} \right]$$
  
= 
$$\lim_{x \to 1} \left[ \frac{(2x-3)(\sqrt{x}-1)}{(2x+3)(x-1)} \right]$$
  
= 
$$\lim_{x \to 1} \left[ \frac{(2x-3)(\sqrt{x}-1)}{(2x+3)(\sqrt{x}-1)(\sqrt{x}+1)} \right]$$
  
= 
$$\lim_{x \to 1} \left[ \frac{2x-3}{(2x+3)(\sqrt{x}+1)} \right]$$
  
= 
$$-1/(5)(2)$$
  
= 
$$-1/10$$

Q24. Prove that the points (0, -1, -7), (2, 1, -9) and (6, 5, -13) are collinear. Find the ratio in which the first point divides the join of the other two.  $AB = \sqrt{(0-2)^2 + (-1-1)^2 + (-7+9)^2}$  $\sqrt{4+4+4} = 2\sqrt{3}$ BC =  $\sqrt{(2-6)^2 + (1-5)^2 + (-9+13)^2}$  $\sqrt{16+16+16} = 4\sqrt{3}$ AC =  $\sqrt{(0-6)^2 + (-1-5)^2 + (-7+13)^2}$  $\sqrt{36+36+36} = 6\sqrt{3}$ Now, AB + BC =  $2\sqrt{3} + 4\sqrt{3}$  $= 6\sqrt{3}$ = AC Thus, A,B & C are collinear. AB:AC =  $2\sqrt{3}$  :  $6\sqrt{3}$ = 1.3 Thus, A divides BC externally in the ratio 1:3. Or Verify that : (-1, 2, 1), (1,-2, 5), (4, -7 8) and (2, -3, 4) are the vertices of a parallelogram. Let A(-1, 2, 1), B(1, -2, 5), C(4, -7, 8) & D(2, -3, 4) ABCD can be vertices of parallelogram only if opposite sides are equal. i.e. AB = CD & BC = AD**Calculating AB**  $\overline{A \equiv (-1, 2, 1)} \text{ and } B \equiv (1, -2, 5)$ Distance AB =  $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ Distance AB =  $\sqrt{(1 - (-1))^2 + (-2 - 2)^2 + (5 - 1)^2}$  $=\sqrt{(2)^2 + (-4)^2 + (4)^2} = \sqrt{4 + 16 + 16} = \sqrt{36} = 6$ <u>Calculating BC</u>,  $B \equiv (1, -2, 5)$  and  $C \equiv (4, -7, 8)$ Distance BC =  $\sqrt{(4-1)^2 + (-7-(-2))^2 + (8-5)^2}$  $=\sqrt{(3)^2 + (-5)^2 + (3)^2} = \sqrt{9 + 25 + 9} = \sqrt{43}$ Calculating CD,C  $\equiv$  (4, -7, 8) and D  $\equiv$  (2, -3, 4)

| Distance CD = $\sqrt{(2-4)^2 + (-3-(-7))^2 + (4-8)^2} = \sqrt{(-2)^2 + (4)^2 + (-4)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $=\sqrt{4 + 16 + 16} = \sqrt{36} = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>Calculating DA.</u> D $\equiv$ (2, -3, 4) and A $\equiv$ (-1, 2, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Distance DA = $\sqrt{(-1-2)^2 + (2-(-3))^2 + (1-4)^2} = \sqrt{(-3)^2 + (5)^2 + (-3)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $=\sqrt{9 + 25 + 9} = \sqrt{43}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Since AB = CD & BC = DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| So, In ABCD both pairs of opposite sides are equal.<br>Thus, ABCD is a parallelogram.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q25. Find the mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean ?                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Given data is, 3,10,10,4,7,10,5<br>Here, n=7, $\bar{x}$ =(3+10+10+4+7+10+5)/7=7                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\therefore$ initial deviation from mean is =( $\sum  x - x $ )/n=2.5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\therefore  iviean deviation from mean is =(\sum  x - x )/n=2.57SECTION – C( Ouestion number 26 to 31 carry 3 marks each )$                                                                                                                                                                                                                                                                                                                                                                                                                |
| SECTION – C ( Question number 26 to 31 carry 3 marks each ) Q26.Find the and range of signum function .Also draw its graph Ans)Signum function is often defined simply as 1 for x > 0 and -1 for x < 0. And for x = 0 it is 0.                                                                                                                                                                                                                                                                                                              |
| SECTION - C<br>(Question number 26 to 31 carry 3 marks each)<br>Q26.Find the and range of signum function .Also draw its graph<br>Ans)Signum function is often defined simply as 1 for x > 0 and -1 for x < 0. And for x = 0 it is 0.<br>$f(x) = \begin{cases} \frac{ x }{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$ $f(x) = \begin{cases} 1, & \text{if } x > 0\\ 0, & \text{if } x = 0\\ -1, & \text{if } x < 0 \end{cases}$                                                                                          |
| SECTION – C<br>(Question number 26 to 31 carry 3 marks each)<br>Q26.Find the and range of signum function .Also draw its graph<br>Ans)Signum function is often defined simply as 1 for x > 0 and -1 for x < 0. And for x = 0 it is 0.<br>$f(x) = \begin{cases} \frac{ x }{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \\ 0, & \text{if } x = 0 \end{cases}$ $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$ , the domain is $(-\infty,\infty)$ and range is $\{1,-1,0\}$ |

Q27.Find the distance of the point of domain intersection of the lines 2x-3y+5=0 and 3x+4y=0 from the line 5x-2y=0.

Given equations are: 2x - 3y + 5 = 0 .....(i)

$$3x + 4y = 0$$
 .....(ii)

From equation (ii) we get,

$$4y = -3x$$
  
$$\Rightarrow y = \frac{-3}{4}x \quad \dots \quad (iii)$$

Putting the value of y in eq. (i) we have

$$2x - 3\left(\frac{-3}{4}x\right) + 5 = 0$$
  
$$\Rightarrow 8x + 9x + 20 = 0$$
  
$$\Rightarrow 17x + 20 = 0$$
  
$$-20$$

$$\Rightarrow x = \frac{20}{17}$$

Putting the value of x in equation (iii) we get

$$y = \frac{-3}{4} \left(\frac{-20}{17}\right)$$
  

$$\Rightarrow y = \frac{15}{17}$$
  

$$\therefore \text{ Point of intersection is } \left(-\frac{20}{17}, \frac{15}{17}\right).$$
  
Now perpendicular distance from the point  $\left(-\frac{20}{17}, \frac{15}{17}\right)$  to the given line  $5x - 2y = 0$  is  

$$\left|\frac{5\left(-\frac{20}{17}\right) - 2\left(\frac{15}{17}\right)}{\sqrt{25 + 4}}\right| = \left|\frac{(-100)17 - \frac{30}{17}}{\sqrt{29}}\right|$$
  

$$= \frac{130}{17\sqrt{29}}$$
  
Q28.If  $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = x + iy$ , then find x and y  
Ans} = 0, and y = -2  
Q29.(a)

Mathematics XI-Mind Curve Practice Paper 02 Answer key By Deepika Bhati (2023-24)  
Probability = 
$$\frac{\text{conditional case}}{\text{total case}}$$
  
For this conditional case of selecting all four same suit, it can be either heart or spades or clubs or diamonds.  
So, total number of conditional case=No. of case of selecting all 4 cards of hearts suit + no. of case of selecting all 4 cards of the same suit = no. of case of selecting all 4 cards of diamonds suit =  $\frac{1}{2}C_4 + \frac{1}{2}C_4 + \frac{1}{2}C_4 + \frac{1}{2}C_4$   
 $= \frac{4 \times 13}{9! \times 1^2 \times 11 \times 10 \times 9!} = 2860$   
Total number of cases =  $\frac{5}{2}C_4 = \frac{52!}{48!4!} = 270725$   
So, probability of getting all 4 cards of the same suit =  $\frac{2860}{270725} = 0.0106$ .  
 $\int \frac{1}{2}C_4 + \frac{1}{2}C_4 + \frac{1}{2}C_4$   
 $= \frac{1}{2}C_4 + \frac{1}{2}C_4 + \frac{1}{2}C_4 = \frac{52!}{48!4!} = 270725$   
So, probability of getting all 4 cards of the same suit =  $\frac{2860}{270725} = 0.0106$ .  
 $\int \frac{1}{2}C_4 + \frac{1}{2}C_4 + \frac{1}{2}C_4 + \frac{1}{2}C_4 = \frac{52!}{48!4!} = 270725$   
So, probability of getting all 4 cards of the same suit =  $\frac{2860}{270725} = 0.0106$ .  
 $\int \frac{1}{2}C_4 + \frac{1}{2}C_4$ 

Find the equation of the circle passing through the point (-1, 3) and having its centre at the point of intersection of the lines x -2y = 4 and 2x+5y=1

$$\begin{aligned} \text{Let, the required equation of tiscle be} &\longrightarrow \\ & (x-h)^{\perp} + (y + k)^{\perp} = x^{\perp} & (i) \\ & y_{0} \text{ level} (h, k) & \text{is the tentice and } x = \text{stadius.} \\ & \vdots & \text{ lie point of intristiction of the given equation of lines,} \\ & x - 2y = 4 \\ & 2x + 5y + 1 = 0 \quad [Solving by cass multiplication method] \\ & bint of intersection = (2, -1) \\ & \vdots & x^{-2y} = 4 \\ & = \sqrt{3^{2} + 4t^{\perp}} \\ & = \sqrt{3^{2}} \\ & = \sqrt{3^{2} + 4t^{\perp}} \\ & = \sqrt{3^{2}} \\ & = \sqrt{3^{2} + 4t^{\perp}} \end{aligned}$$

$$(2 + 1)^{2} + (y - 3)^{2} = 5^{2} \\ & (x + 1)^{2} + (y - 5y)^{2} = 5^{2} \\ & = \sqrt{3^{2} + 4t^{\perp}} \\ & = \sqrt{3^{2}} \\ & = \sqrt{3^{2} + 4t^{\perp}} \end{aligned}$$

$$(2 + 1)^{2} + 1 + 2x + y^{1} + 9 - 5y = 25 = 3 \\ & x^{1} + y^{1} + 2x - 5y = -15 = 0 \end{aligned}$$

$$(331.$$

$$\text{LH.S. = cos 20^{\circ}, cos 40^{\circ}, cos 60^{\circ}, cos 80^{\circ} \\ & = cos 20^{\circ}, cos 40^{\circ}, \frac{1}{2}, cos 80^{\circ} \\ & = \frac{1}{2 \times 2} (2cos 40^{\circ}, cos 20^{\circ}), cos 80^{\circ} \\ & = \frac{1}{4} (cos 60^{\circ} + cos 20^{\circ}) cos 80^{\circ} \\ & = \frac{1}{4} (cos 60^{\circ} + cos 20^{\circ}) cos 80^{\circ} \\ & = \frac{1}{4} (cos 60^{\circ} + cos 20^{\circ}) cos 80^{\circ} \\ & = \frac{1}{4} (cos 60^{\circ} + \frac{1}{2 \times 4} (2cos 80^{\circ} cos 20^{\circ}) \\ & = \frac{1}{4} (cos 80^{\circ} + \frac{1}{2 \times 4} (2cos 80^{\circ} cos 20^{\circ}) \\ & = \frac{1}{8} cos 80^{\circ} + \frac{1}{8} (cos (100^{\circ} + cos 60^{\circ}) \\ & = \frac{1}{8} cos 80^{\circ} + \frac{1}{8} cos (180^{\circ} - 80^{\circ}) + \frac{1}{8} \times \frac{1}{2} \\ & = \frac{1}{8} cos 80^{\circ} + \frac{1}{8} cos 80^{\circ} + \frac{1}{16} \\ & = \text{RHS.} \end{aligned}$$

#### OR

Prove that 
$$\cos \alpha + \cos \beta + \cos \gamma + \cos(\alpha + \beta + \gamma) = 4\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\beta+\gamma}{2}\right)\cos\left(\frac{\gamma+\alpha}{2}\right)$$
  
LHS =  $\cos \alpha + \cos \beta + \cos \gamma + \cos(\alpha + \beta + \gamma)$   
=  $2\cos((\alpha + \beta)/2)\cos((\alpha - \beta)/2) + 2\cos((\alpha + \beta + 2\gamma)/2)\cos((-\alpha - \beta)/2)$   
Using  $\cos(-A) = \cos A$   
=  $2\cos((\alpha + \beta)/2)\cos((\alpha - \beta)/2) + 2\cos((\alpha + \beta + 2\gamma)/2)\cos((\alpha + \beta)/2)$   
=  $2\cos((\alpha + \beta)/2)(\cos((\alpha - \beta)/2) + \cos((\alpha + \beta + 2\gamma)/2))$   
=  $2\cos((\alpha + \beta)/2)(2\cos((\alpha + \gamma)/2)\cos((-\beta - \gamma)/2))$   
=  $2\cos((\alpha + \beta)/2)(2\cos((\alpha + \gamma)/2))\cos((-\beta + \gamma)/2))$   
=  $4\cos((\alpha + \beta)/2)\cos((\beta + \gamma)/2)\cos((\alpha + \gamma)/2)$   
= RHS



```
b) Find slope of Equation formed by Rani and Sneha. (Ans: -2/3)
c) Find equation of median of line through Rani (Ans: 4y+5x-2=0)
      or
Find equation of altitude through Mansi(Ans: 3x-2y-1 =0)
34.
Q34.
A is twice likely to be selected as B, P(A) = 2 P(B)
& C is twice likely to be selected as D, P(C) = 2 P(D)
It is given that B & C have about the same chance
Thus, P(B) = P(C)
Now, sum of all probabilities is 1,
Thus,
P(A) + P(B) + P(C) + P(D) = 1
P(A) + P(B) + P(B) + P(D) = 1
Thus,
P(A) + P(A)/2 + P(A)/2 + P(C)/2 = 1
[2 P(A) + P(A) + P(A) + P(B)]/2 = 1
4 P(A) + P(A) / 2 = 2
[8 P(A) + P(A)] / 2 = 2
9 P(A) = 4
P(A) = 4/9
a)Find the probability that A is selected=4/9
b)Find the probability that C is selected =2/9
c) Find the Probability that A is not selected=5/9
  or
Find the Probability that C is not selected=7/9
                                          SECTION - E
                          (Question number 35 to 38 carry 5 marks each)
Q35.Find the value of the expression
\cos^4\frac{\pi}{8} + \cos^4\frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}
```

$$\cos^4 \pi/8 + \cos^4 3\pi/8 + \cos^4 5\pi/8 + \cos^4 7\pi/8$$

$$\Rightarrow \cos^{4} \pi/8 + \cos^{4} 3\pi/8 + \cos^{4} (\pi - 3\pi/8) + \cos^{4} (\pi - \pi/8)$$

$$\Rightarrow \cos^4 \pi/8 + \cos^4 3\pi/8 + \cos^4 \pi/8 + \cos^4 3\pi/8$$

$$\Rightarrow 2(\cos^4 \pi/8 + \cos^4 3\pi/8)$$

$$\Rightarrow 2[\cos^{4}\pi/8 + \cos^{4}(\pi/2 - \pi/8)]$$
  

$$\Rightarrow 2[\cos^{4}\pi/8 + \sin^{4}\pi/8]$$
  

$$\Rightarrow 2[(\cos^{2}\pi/8 + \sin^{2}\pi/8)^{2} - 2.\cos^{2}\pi/8.\sin^{2}\pi/8]$$
  

$$\Rightarrow 2[1 - 2.\cos^{2}\pi/8.\sin^{2}\pi/8]$$
  

$$\Rightarrow 2[1 - 1/2.4.\cos^{2}\pi/8.\sin^{2}\pi/8] = 2[1 - 1/2.(\sin^{2}\pi/4)^{2}]$$
  

$$\Rightarrow 2[1 - 1/2 \times 1/2] = 3/2$$

#### Or

# Prove that $sin 20^0 sin 40^0 sin 60^0 sin 80^0 = \frac{3}{16}$

L.H.S. = sin 20°  $\cdot$  sin 40°  $\cdot$  sin 60°  $\cdot$  sin 80°

$$= \frac{\sqrt{3}}{2} \cdot \sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 80^{\circ} \dots \left[ \because \sin 60^{\circ} = \frac{\sqrt{3}}{2} \right]$$

$$= \frac{\sqrt{3}}{4} (2 \sin 40^{\circ} \cdot \sin 20^{\circ}) \cdot \sin 80^{\circ}$$

$$= \frac{\sqrt{3}}{4} [\cos(40^{\circ} - 20^{\circ}) - \cos(40^{\circ} + 20^{\circ})] \times \sin 80^{\circ}$$

$$= \frac{\sqrt{3}}{4} [\cos 20^{\circ} - \cos 60^{\circ}] \cdot \sin 80^{\circ}$$

$$= \frac{\sqrt{3}}{8} [2 \sin 80^{\circ} \cdot \cos 20^{\circ} - 2 \cos 60^{\circ} \cdot \sin 80^{\circ}]$$

$$= \frac{\sqrt{3}}{8} \left[ \sin(80^{\circ} + 20^{\circ}) + \sin(80^{\circ} - 20^{\circ}) - 2 \times \frac{1}{2} \cdot \sin 80^{\circ} \right]$$

$$= \frac{\sqrt{3}}{8} \left[ \sin(100^{\circ} + \sin 60^{\circ} - \sin 80^{\circ}] \right]$$

$$= \frac{\sqrt{3}}{8} \left[ \sin(180^{\circ} - 80^{\circ}) + \frac{\sqrt{3}}{2} - \sin 80^{\circ} \right]$$

$$= \frac{\sqrt{3}}{8} \left( \sin 80^{\circ} + \frac{\sqrt{3}}{2} - \sin 80^{\circ} \right)$$

$$= \frac{\sqrt{3}}{8} \times \frac{\sqrt{3}}{2}$$

$$= \frac{3}{16}$$

$$= \text{R.H.S.}$$

Q36.A line is such that its segment between the straight lines 5x-y+4=0 and 3x+4y-4=0 is bisected at the point (1,5). Obtain its equation

 $5x - y + 4 = 0 \qquad \dots (1)$   $3x + 4y - 4 = 0 \qquad \dots (2)$ Let the required line intersects the lines (1) and (2) at the points,  $(\alpha_1, \beta_1)$  and  $(\alpha_2, \beta_2)$ , respectively (Fig10.24). Therefore  $5\alpha_1 - \beta_1 + 4 = 0 \text{ and}$  $3 \alpha_2 + 4 \beta_2 - 4 = 0$ 



or  $\beta_1 = 5\alpha_1 + 4$  and  $\beta_2 = \frac{4 - 3\alpha_2}{4}$ .

We are given that the mid point of the segment of the required line between  $(\alpha_1, \beta_1)$  and  $(\alpha_2, \beta_2)$  is (1, 5). Therefore

$$\frac{\alpha_1 + \alpha_2}{2} = 1 \text{ and } \frac{\beta_1 + \beta_2}{2} = 5,$$
  
$$\alpha_1 + \alpha_2 = 2 \text{ and } \frac{5\alpha_1 + 4 + \frac{4 - 3\alpha_2}{4}}{2} = 5,$$

or

or 
$$\alpha_1 + \alpha_2 = 2$$
 and  $20 \alpha_1 - 3 \alpha_2 = 20$  ... (3)

.....

Solving equations in (3) for  $\alpha_1$  and  $\alpha_2$ , we get

$$\alpha_1 = \frac{26}{23}$$
 and  $\alpha_2 = \frac{20}{23}$  and hence,  $\beta_1 = 5 \cdot \frac{26}{23} + 4 = \frac{222}{23}$ 

Equation of the required line passing through (1, 5) and  $(\alpha_1, \beta_1)$  is

$$y-5 = \frac{\beta_1 - 5}{\alpha_1 - 1} (x-1)_{\text{or}} \ y-5 = \frac{\frac{222}{23} - 5}{\frac{26}{23} - 1} (x-1)$$

Equation of the required line passing through (1, 5) and  $(\alpha_1, \beta_1)$  is

$$y-5 = \frac{\beta_1 - 5}{\alpha_1 - 1}(x-1)$$
 or  $y-5 = \frac{\frac{222}{23} - 5}{\frac{26}{23} - 1}(x-1)$ 

or

which is the equation of required line.

107x - 3y - 92 = 0,

#### Or

Assuming that straight lines work as the plane mirror for a point , find the image of the point (1,2) in the line x-3y+4=0.

Let say point Q(h, k) is the image of point P(1, 2) in the line  
x 3y+4=0.  
Then mid point of QP will lie on x-3y+4=0.  

$$\Rightarrow (h + 1)/2 \cdot (k + 2)/2 \times uill lie on x-3y+4=0.$$
  
 $\Rightarrow (h + 1)/2 \cdot (k + 2)/2 + 4 = 0$   
 $\Rightarrow h + 1 - 3k - 6 + 8 = 0$   
 $\Rightarrow h - 3k = -3$   
Also line between (h, k) and (1, 2) will be perpendicular to  
x-3y+4=0  
Slope between (h, k) and (1, 2) = (k - 2)/(h - 1)  
Slope of x-3y+4=0  $\Rightarrow$  3y = x + 4  $\Rightarrow$  y = (1/3)x + 4/3 slope = 1/3  
(k - 2)/(h - 1) \* (1/3) = -1  
 $\Rightarrow k - 2 = -3(h - 1)$   
 $\Rightarrow k - 5$  Eq2  
Eq2 - 3 \*Eq1  
 $3h + k = 5$   
 $h - 3k = -3$  Eq1  
 $3h + k = 5$   
 $h - 3k = -3$  Eq1  
 $f(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$   
 $= \lim_{h \to 0} \frac{x \cdot 2 \cos\left(\frac{2x + h}{2}\right) \sin\left(\frac{x + h - x}{2}\right) + h \sin(x + h)$   
 $h$   
 $= \lim_{h \to 0} \frac{x \cdot 2 \cos\left(\frac{2x + h + x}{2}\right) \sin\left(\frac{x + h - x}{2}\right) + h \sin(x + h)$   
 $h$   
 $= \lim_{h \to 0} \frac{2x \cos\left(\frac{2x + h}{2}\right) \sin\left(\frac{h}{2}\right)$   
 $h$   
 $= 2x \cos\left(\frac{2x + 0}{2}\right) \cdot \frac{1}{2} + \sin(x + 0)$   
 $= x \cos x + \sin x \Rightarrow F(x) = x \cos x + \sin x$ 

Q38.

Ans

| Class       | Frequency $f_i$ | Mid-point $x_i$ | $y_i = rac{x_i - 42.5}{4}$ | $y_i{}^2$ | $f_i y_i$ | $f_i {y_i}^2$ |
|-------------|-----------------|-----------------|-----------------------------|-----------|-----------|---------------|
| 32.5 - 36.5 | 15              | 34.5            | -2                          | 4         | -30       | 60            |
| 36.5 - 40.5 | 17              | 38.5            | -1                          | 1         | -17       | 17            |
| 40.5 - 44.5 | 21              | 42.5            | 0                           | 0         | 0         | 0             |
| 44.5 - 48.5 | 22              | 46.5            | 1                           | 1         | 22        | 22            |
| 48.5 - 52.5 | 25              | 50.5            | 2                           | 4         | 50        | 100           |
|             | 100             |                 |                             |           |           | 199           |

mean = A +  $\left[\sum f_i y_i\right]/N \times h$ 

= 42.5 + 25/100 × 4

= 42.5 + 1

= 43.5

```
Variance(\sigma^2) = h^2/N^2 [N \sum (f_i y_i)^2 - (\sum f_i y_i)^2]
```

```
= (16)/(10000) [100 \times 199 - (25)^2]
```

```
= (16)/(10000) [19900 - 625]
```

```
= (16)/(10000) × 19275
```

= 30.84

#### Standard deviation,

```
(σ) = √ 30.84
```

= 5.55

To get more sample papers, practice papers, study material (Only for CBSE XI ) Join my

#### whatsapp group at

https://chat.whatsapp.com/L3RcA9CYQJ5CXAw8fk2PpF