

CBSE Class XI Mathematics Sample Paper 04 As per pattern issued by CBSE for (2023-24)

Maximum Marks : 80

Time: 3 hrs.

General Instructions :

1. This Question Paper has 5 Sections A-E.

2. Section A has 20 MCQs carrying 1 mark each

3. Section B has 5 questions carrying 02 marks each.

4. Section C has 6 questions carrying 03 marks each.

5. Section D has 3 case based integrated units of assessment (04 marks each) with subparts of the values

of 1, 1 and 2 marks each respectively.

6. Section E has 4 questions carrying 05 marks each.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs

of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has

been provided in the 2marks questions of Section E

8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION A (Question 1 to 20 carry 1 mark)

Q1.If $P(A) = (\{1,2\})$ where P denotes the power set, then which one of the following is correct?

a){1,2}⊂A	b)1 <i>eA</i>	
c) <i>φ</i> ∉ <i>A</i>	d){1,2} ∈ A	

Q2. If $\tan\theta = \frac{1}{2}$ and $\tan\phi = \frac{1}{2}$ then the value of $\theta + \phi$ is

a) $\frac{\pi}{6}$	THINK B	b) <i>π</i>
c)0		$d)\frac{\pi}{4}$

Q3.If A = {1, 2, 6} and R be the relation defined on A by $R=\{(a,b):a, b \in A \text{ and } a \text{ divides } b\}$, then range of R is equal to

a){1,2}	b) {2,6}
c){1,2,6}	d)none of these

Q4. For each non-zero real number x, let $f(x) \frac{x}{|x|}$

a)a null set	b) a set containing only one element
c) a set containing only two element	d) a set containing infinite element

Q5.If $\sin\theta + \cos\theta = 1$, then the value of $\sin 2\theta$ is equal to

a)1	b) 1/2
c)0	d)2

a)11	b) 10
c)66	d)12
Q7 .If $m_{\mathcal{C}_1} = \eta_{\mathcal{C}_2}$ then	
a)2m=n	b) 2m=n(n+1)
c)2m=n(n-1)	d)2n=m(m-1)
Q8. If $z_1 = 2 - i$ and $z_2 = -2 + i$ su	uch that $\frac{z_1 z_2}{\overline{z_1}} = a + ib$ then a is equal to
a)2/5	b) 3/5
c)11/5	b) 3/5 d)-2/5
Q9.The equation of a line perpendicu a)y=2x c)x=-2y	ular to the line x-2y+3= 0 and passing through the point (1, - 2) is b) x=2y d)y=-2x
Q10 .Domain of $f(x) = \frac{1}{\sqrt{x+ x }}$	
a)(−∞,∞)	b)(2,∞)
c)(−∞,2)	d)(0,∞)
Q11 . If $\frac{(x-3)}{x-5} > 0$ then x belongs to	b) (-∞,3) ∪ (-5,∞)
a) $(-\infty, 3) \cup (5, \infty)$ c) $(-\infty, 3] \cup [5, \infty)$	d)(3,5)
Q12 .Find the geometric mean betwe	en 1 and 4
T	ITTNE DEWAND
Q12 .Find the geometric mean betwee a)2 c)4	b) 0 d)-2
a)2 c)4	b) 0 d)-2
a)2 c)4 Q13.Value of $\lim_{x \to 1} \frac{2}{1-x^2} + \frac{1}{x-1}$ is a)1/2	b) 0 d)-2 ATIONAL INSTITUTE b) 1/3
c)4 Q13.Value of $\lim_{x \to 1} \frac{2}{1-x^2} + \frac{1}{x-1}$ is	ATIONAL INSTITUTE
a)2 c)4 Q13.Value of $\lim_{x \to 1} \frac{2}{1-x^2} + \frac{1}{x-1}$ is a)1/2 c)1/4	b) 0 d)-2 ATIONAL INSTITUTE b) 1/3 d)1
a)2 c)4 Q13.Value of $\lim_{x \to 1} \frac{2}{1-x^2} + \frac{1}{x-1}$ is a)1/2 c)1/4	b) 0 d)-2 ATIONAL INSTITUTE b) 1/3 d)1
a)2 c)4 Q13.Value of $\lim_{x \to 1} \frac{2}{1-x^2} + \frac{1}{x-1}$ is a)1/2 c)1/4 Q14.If nth term of GP is 2^n , then sum	b) 0 d)-2 ATIONAL INSTITUTE b) 1/3 d)1
a)2 c)4 Q13.Value of $\lim_{x\to 1} : \frac{2}{1-x^2} + \frac{1}{x-1}$ is a)1/2 c)1/4 Q14.If nth term of GP is 2^n , then sum a)126 c)190	b) 0 d)-2 ATIONAL INSTITUTE b) 1/3 d)1 of first 6 terms is b) 124
a)2 c)4 Q13.Value of $\lim_{x\to 1} \frac{2}{1-x^2} + \frac{1}{x-1}$ is a)1/2 c)1/4 Q14.If nth term of GP is 2^n , then sum a)126 c)190	b) 0 d)-2 ATIONALINSTITUTE b) 1/3 d)1 of first 6 terms is b) 124 d)154

a) an even positive integer	b) a rational number
c) an odd positive integer	d) an irrational number

Q17. If repetition of the digits is allowed, then the number of even natural numbers having three digits is

a)250	b) 350
c)450	d)550

Q18. The centre of the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ is (a, b) then (2a + 3 b) is

a)0	b) 2
c)3	d) 5

Q19. Assertion (A) If $\left(\frac{x}{3} + 1, y - \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$ then the values of x and y are 2 and 1, respectively.

Reason (R) If the set A has 3 elements and the set $B = \{3,4,5\}$ then the number of elements in A X B is 6.

a)Both assertion and reason are true and reason is	b)Both assertion and reason are true but reason is
the correct explanation of assertion	not the correct explanation of assertion
c)Assertion is true but reason is false.	d) Assertion is false but reason is true.

Q20. Assertion (A) Three sets A , B , C are such that $A = B \cap C$ and $B = C \cap A$, then A = B.

II I IVII

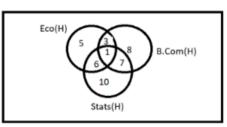
Reason (R) If A = $\{x, y\}$, then A \cap p(A) = A	
a)Both assertion and reason are true and reason is	b)Both assertion and reason are true but reason is
the correct explanation of assertion	not the correct explanation of assertion
c)Assertion is true but reason is false.	d) Assertion is false but reason is true.

SECTION B (Question 21 to 25 carry 2 mark)

DUUU

- Q21. Find the equation of the parabola with vertex at the origin and focus on positive x axis and passes through point (2,2).
- **Q22**. Prove that cos 50° cos 10° sin 50° sin 10° = 1/2 OR

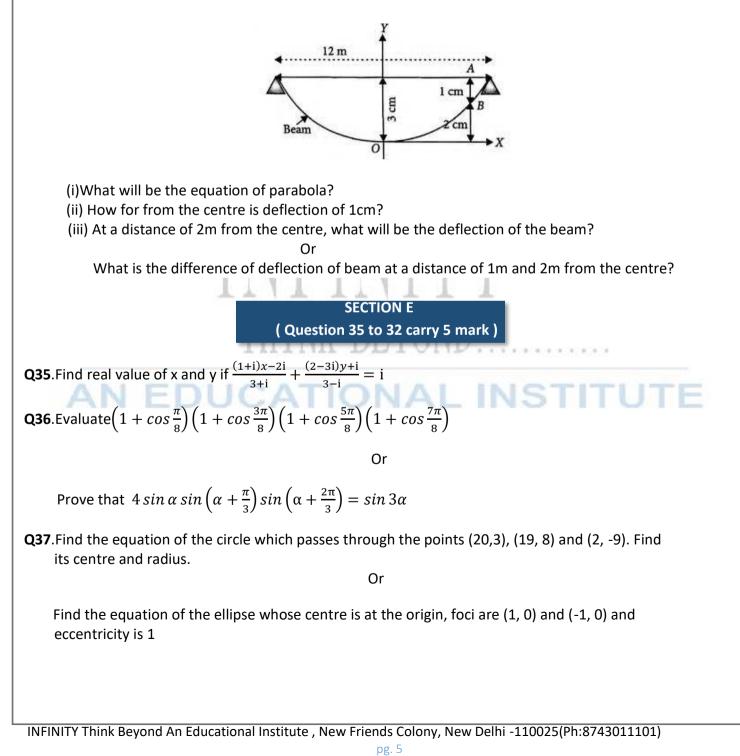
Express as the product of sines and cosines: sin 15x - sinx.

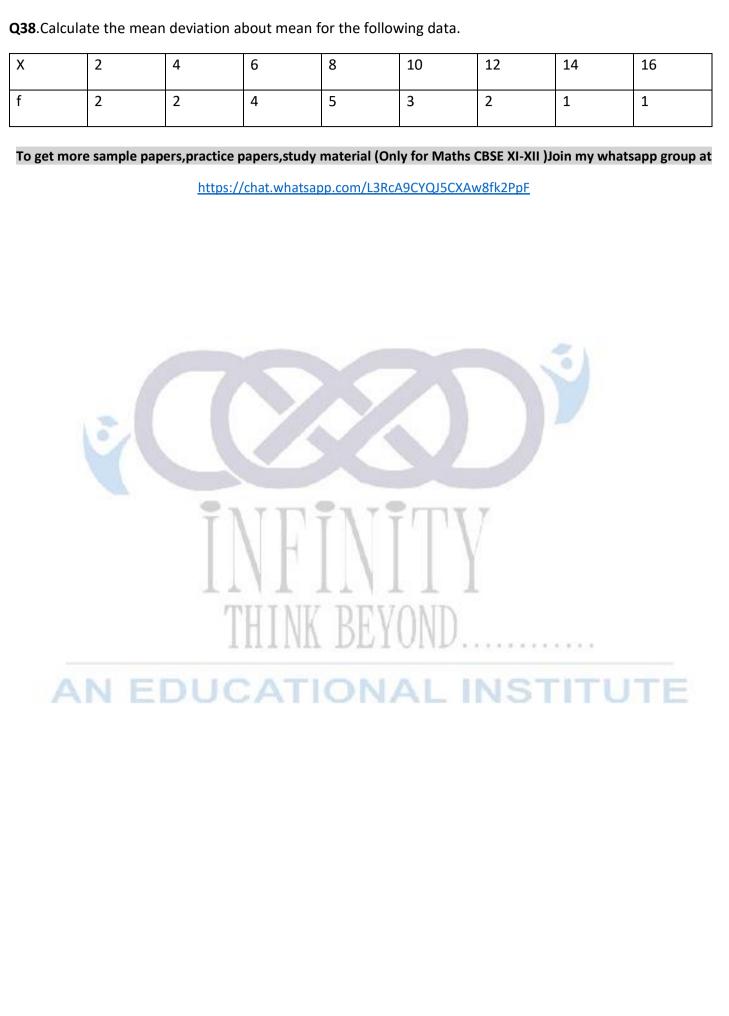

- **Q23**. Find the derivative of the function : $\frac{x^n}{\cos ax}$
- **Q24**. How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words: the vowels are always together?

OR

How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?

Q25. The number lock of a suitcase has 4 wheels with 10 digits, i.e. from 0 to 9. The lock open with a sequence of 4 digits with repeats allowed. What is the probability of a person getting the right sequence to open the suit case?


(i) How many colleges Saksham has Shortlisted only for economics (Hons.)


(ii) How many colleges he has not shortlisted .

(iii) How many colleges he has shortlisted for B.com(Hons.) or statistics (Hons.)

How many colleges he has shortlisted for statistics (Hons.) but not for economics (Hons.)

Q34. A beam is supported at its ends by supports which are 12m apart. Since the load is concentrated at its centre, there is a deflection of 3 cm at the centre and the deflected beam is in the shape of a parabola.

CBSE Class XI Mathematics Sample Paper 04 Answer key

SECTION – A (Question number 1 to 20 carry 1 marks each)

Q1.	D
Q2.	D
Q3.	С
Q4.	С
Q5.	С
Q6.	Α
Q7.	С
Q8.	D
Q9.	D
Q10.	D
Q11.	Α
Q12.	Α
Q13.	Α
Q14.	Α
Q15.	В
Q16.	D
Q17.	С
Q18.	Α
Q19.	D
Q20.	Α

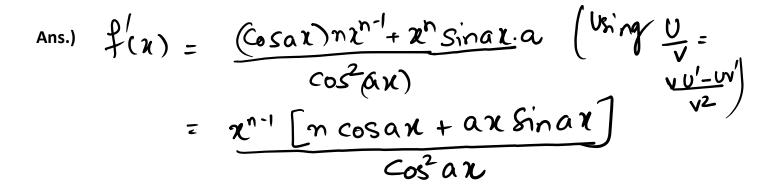
SECTION – B (Question number 21 to 25 carry 2 marks each)

Q21. Find the equation of the parabola with vertex at the origin and focus on positive x axis and passes through point (2,2).

Ans.) Equation of the parabola, $y^2=4ax$. Since, it passes through (2,2), a=1/2 \therefore Equation of the parabola, $y^2=4(1/2)x$ $\Rightarrow y^2=2x$

Q22. Prove that $\cos 50^\circ \cos 10^\circ - \sin 50^\circ \sin 10^\circ = 1/2$

Ans.) cos 50° cos 10°-sin 50° sin 10° =cos(50°+10°)[Using cos A cos B-sin A sin B=cos(A+B)]. =cos 60°=1/2


OR

Express as the product of sines and cosines: sin 15x – sinx.

Ans.)
$$\sin 15x - \sin x$$

 $\sin A - \sin B = 2 \sin\{(A - B)/2\} \cos\{(A + B)/2\}$
 $A = 15x$
 $B = x$
 $= 2 \sin\{(15x - x)/2\} \cos\{)15x + x)/2\}$
 $= 2 \sin(14x/2)\cos(16x/2)$
 $= 2 \sin7x \cos8x$

sin 15x -sin x = 2Sin7x Cos8x

Q23. Find the derivative of the function : $\frac{x^n}{\cos ax}$

Q24. How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words: the vowels are always together?

Ans.)

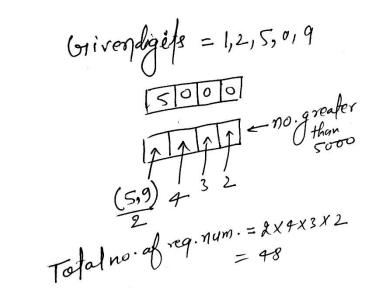
The word GANESHPURI consists of 10 distinct letters.

Number of letters = 10!

The word GANESHPURI consists of 4 vowels. If we keep all the vowels together, we have to consider them as a single entity.

So, we are left with the remaining 6 consonants and all the vowels that are taken together as a single entity. This gives us a total of 7 entities that can be arranged in 7! ways.

Also, the 4 vowels can be arranged in 4! ways amongst themselves.


By fundamental principle of counting:

Total number of arrangements $= 7! \times 4!$ words.

OR

How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?

Ans.)

Q25.The number lock of a suitcase has 4 wheels with 10 digits, i.e. from 0 to 9. The lock open with a sequence of 4 digits with repeats allowed. What is the probability of a person getting the right sequence to open the suit case?

Ans.) Number of wheels in number lock of suitcase =4. ----

Now, first wheel can have any one of the tens digits from 0 to 9.

Since, repetition is not allowed, so second wheel can have any of the remaining 8 digits.

Similarly, third wheel can have any of the remaining 7 digits.

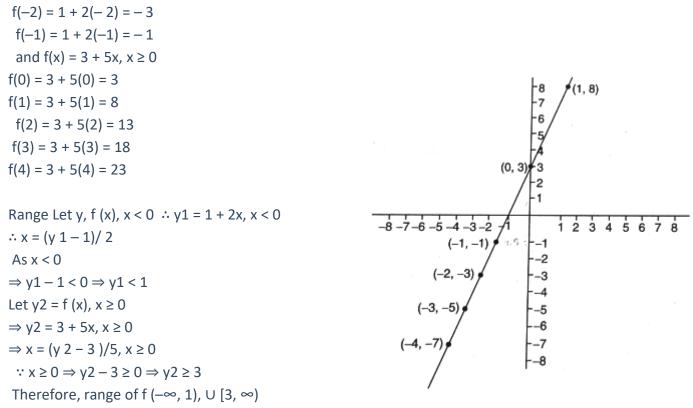
And fourth wheel can have any of the remaining 6 digits

So, number of four digit lock code that can be formed without repetition of digits =10×9×8×7=5040

So, total four digit numbers formed =5040

But since, the lock can open with only one of the all four digit numbers.

Hence, required probability =1/5040


SECTION – C

(Question number 26 to 31 carry 3 marks each)

Q26.Draw the graph of the function $f(x) = \begin{cases} 1 + 2x, x < 0\\ 3 + 5x, x \ge 0 \end{cases}$ also find its range.

Ans.) Here, f(x) = 1 + 2x, x < 0, this given f(-4) = 1 + 2(-4) = -7f(-3) = -1 + 2(-3) = -5

INFINITY Think Beyond An Educational Institute, New Friends Colony, New Delhi -110025(Ph:8743011101)

Q27.Find the equation of a line with slope –1 and whose perpendicular distance from the origin is equal to 5.

Ans.)

Let c be the intercept on the y-axis.

Then, the equation of the line is

$$y = -x + c [:: m = -1]$$

$$\Rightarrow x + y = c$$

$$\Rightarrow \frac{x}{\sqrt{1^2 + 1^2}} + \frac{y}{\sqrt{1^2 + 1^2}} = \frac{c}{\sqrt{1^2 + 1^2}} \left[\text{Dividing both sides by } \sqrt{(\text{ coefficient of x })^2 + (\text{ coefficient of y })^2} \right]$$

$$\Rightarrow \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = \frac{c}{\sqrt{2}}$$

This is the normal form of the given line.

Therefore,

 $\displaystyle \frac{c}{\sqrt{2}}$ denotes the length of the perpendicular from the origin. Bi $\displaystyle \therefore \left| \frac{c}{\sqrt{2}} \right| = 5$ $\Rightarrow c = \pm 5 \sqrt{2}$

Thus, substituting

 $c=\pm 5\sqrt{2}$ in y=-x+c ,we get the equation of line to be $y=-x+5\sqrt{2}$ or, $x+y-5\sqrt{2}=0$

OR The line 2x − 3y = 4 is the perpendicular bisector of the line segment AB. If coordinates of A are (−3, 1) find coordinates of B.

INFINITY Think Beyond An Educational Institute , New Friends Colony, New Delhi -110025(Ph:8743011101)

Ans.) Let the co-ordinates of B are (p, q).

Then, slope of line AB, $m_1 = \frac{q-1}{p+3}$.

And, slope of line 2x - 3y = 4 is $\frac{2}{3} = mL$.

Since the lines are perpendicular, so $m_1 m_2 = -1$

$$\Rightarrow \frac{q-1}{p+3} \times \frac{2}{3} = -1$$

$$\Rightarrow 2q - 2 = -3p - 9$$

$$\Rightarrow$$
 3p + 2q + 7 = 0 ...(1)

The midpoint of AB is $\left(rac{p-3}{2},rac{q+1}{2}
ight)$, which lies on the line AB.

$$\therefore 2\left(\frac{p-3}{2}\right) - 3.\left(\frac{q+1}{2}\right) = 4$$
$$\Rightarrow 2p - 6 - 3q - 3 = 8$$
$$\Rightarrow 2p - 3q - 17 = 0...(2)$$

Solving (1) and (2), we get p = 1, q = -5.

- Q28 The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio (3+2v2) : (3-2v2)
- Ans.) Let the two numbers be *a* and *b*.

G.M. =
$$\sqrt{ab}$$

According to the given condition,

$$a + b = 6\sqrt{ab} \qquad \dots(1)$$

$$\Rightarrow (a + b)^2 = 36(ab)$$

$$(a - b)^2 = (a + b)^2 - 4ab = 36ab - 4ab = 32ab$$

$$\Rightarrow a - b = \sqrt{32}\sqrt{ab}$$

$$= 4\sqrt{2}\sqrt{ab} \qquad \dots(2)$$

Adding (1) and (2), we obtain

$$2a = (6 + 4\sqrt{2})\sqrt{ab}$$
$$\Rightarrow a = (3 + 2\sqrt{2})\sqrt{ab}$$

Substituting the value of a in (1), we obtain

$$b = 6\sqrt{ab} - (3 + 2\sqrt{2})\sqrt{ab}$$

$$\Rightarrow b = (3 - 2\sqrt{2})\sqrt{ab}$$

$$\frac{a}{b} = \frac{(3 + 2\sqrt{2})\sqrt{ab}}{(3 - 2\sqrt{2})\sqrt{ab}} = \frac{3 + 2\sqrt{2}}{3 - 2\sqrt{2}}$$

Thus, the required ratio is $(3+2\sqrt{2})$: $(3-2\sqrt{2})$.

Q29.If A is the set of all divisors of the number 15. B is the set of prime numbers smaller than 10 and C is the set of even number smaller than 9, then find the value of (A \cup C) \cap B.

Ans.) As mentioned in the question, set A is the set of the divisors of the number 15.

And we know that A divisor, also called a factor, of a number is a number which divides. For integers, only positive divisors are usually considered, though obviously the negative of any positive divisor is itself a divisor.A={1,3,5,15}

As mentioned in the question, B is the set of prime numbers smaller than $10.B=\{2,3,5,7\}$ As mentioned in the question, C is the set of even numbers smaller than $9.C=\{2,4,6,8\}$ Thus, $(A\cup C)\cap B=\{2,3,5\}$

Or

If
$$x = \{4^n - 3n - 1, n \in N\}$$

 $y = \{9(n - 1), n \in N\}$, Find the value of X \cup Y

Ans.) X={0,9,54...} Y={0,9,18,27...} Hence X is a subset of Y Therefore X∪Y=Y

Q30. Find the coordinates of the points which trisect the line segment joining the points P (4, 2, 6) and Q (10, 16, 6).

Ans.) Let A and B be the points that trisect the line segment joining points P (4, 2, -6) and Q (10, -16, 6)

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by

$$\left(\frac{1(10)+2(4)}{1+2},\frac{1(-16)+2(2)}{1+2},\frac{1(6)+2(-6)}{1+2}\right) = (6,-4,-2)$$

Point B divides PQ in the ratio 2:1. Therefore, by section formula, the coordinates of point B are given by

$$\left(\frac{2(10)+1(4)}{2+1}, \frac{2(-16)+1(2)}{2+1}, \frac{2(6)-1(6)}{2+1}\right) = (8, -10, 2)$$

Thus, (6, -4, -2) and (8, -10, 2) are the points that trisect the line segment joining points P (4, 2, -6) and Q (10, -16, 6).

Q31. Prove that $\frac{\sin\theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = tan \theta$

INFINITY Think Beyond An Educational Institute, New Friends Colony, New Delhi -110025(Ph:8743011101)

Ans.) $sin(2\theta)=2sin\theta cos\theta$

 $\cos(2\theta)=2\cos^2\theta-1$

 $tan\theta = sin\theta / cos\theta$

Therefore,

LHS= $(\sin\theta + \sin 2\theta)/(1 + \cos \theta + \cos 2\theta)$

= $(\sin\theta + 2\sin\theta\cos\theta)/(1 + \cos\theta + 2\cos^2\theta - 1)$

```
=\sin\theta(1+2\cos\theta)/\cos\theta(1+2\cos\theta)
```

=tanθ

=RHS

SECTION – D (Question number 32 to 34 carry 4 marks each Q32.

Q 32. The given word, 'HARYANA' consists of 7 letters, out of which there are 1 H, 3 A's, 1 R, 1 Y and 1 N. Total number of words formed by all the letters of the given word =7!3!=840.=7!3!=840. How many words start and end with letter A?

```
Ans.)A <mark>H,R,Y,A,N</mark> ,A
5! =120
```

- a) How many words containing all A's together?
 Ans.) H,R,Y,N,A,A ,A
 5! =120
- b) How many words have exactly 4 letters in between H and Y? Ans .)For H and Y there are 4 ways For remaining 5, there are 5!/3! =20 Total ways are 20X4=80

Or

In how many words are there in which all A's are not together. Ans.)840-120=720

Q33.

Q34. A beam is supported at its ends by supports which are 12m apart. Since the load is concentrated at its centre, there is a deflection of 3 cm at the centre and the deflected beam is in the shape of a parabola.

a) What will be the equation of parabola?
 Ans.) The beam takes the shape of a parabola, whose equation is of the form x²=4ay
 ...(i)

Since the point P(6,3/100) lie on it, we have

```
(4 \times a \times 3/100) = 36
\Rightarrow a = 36 \times 12/12
\Rightarrow a = 300 \text{ m.}
```

Required equation is x²=1200y

b) How for from the centre is deflection of 1cm? Ans.) Let AB be the deflection. Then,

AB =1/100m and Q is B(x,2/100)

- \therefore x²=4×300×2/100 \Leftrightarrow x=2 $\sqrt{6}$ m is the required distance.
- c) At a distance of 2m from the centre, what will be the deflection of the beam? Ans.).) Let TS be the deflection. Then,

OS = 2 m and T is T(2,y)

 \therefore 2²=4×300×y \Leftrightarrow x=1/300 m is the required deflection.

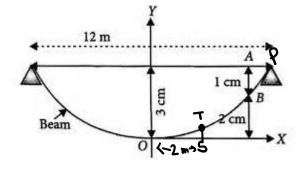
SECTION – E (Question number 35 to 38 carry 5 marks each)

Q35.Find real value of x and y if
$$\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$$

Ans.)

$$\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$$

$$= \frac{[x+i(x-2)][3-i]+[3+i][2y+i(1-3y)]}{10}$$


$$= \frac{[3x+x-2+i(3x-6-x)]+[6y+3y-1+i(2y+3-9y)]}{10}$$

$$= \frac{4x-2+i(2x-6)+(9y-1)+i(-7y+3)}{10}$$

$$= \frac{4x+9y-3+i(2x-7y-3)}{10} = i$$

Q36.Evaluate $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right)$

Ans.)
(Jus: Find the value of
$$(1+\cos \frac{\pi}{8})(1+\cos \frac{\pi}{8})(1+\cos \frac{\pi}{8})(1+\cos \frac{\pi}{8})=$$

 $=)$ $(1+\cos \frac{\pi}{8})(1+\sin (\frac{\pi}{2}-\frac{3\pi}{8}))(1+\sin (\frac{\pi}{2}-\frac{5\pi}{8}))(1+\cos (\pi-\frac{\pi}{8}))$
 $=)$ $(1+\cos \frac{\pi}{8})(1+\sin \frac{\pi}{8})(1-\sin \frac{\pi}{8})(1-\cos \frac{\pi}{8})$.
 $APPLy identity (a+b)(a-b) = a^2-b^2$
 $=)$ $(1-\cos^2 \frac{\pi}{8})(1-\sin^2 \frac{\pi}{8}) \Rightarrow \sin^2(\frac{\pi}{8}) \times \cos^2 \frac{\pi}{8}$
 $=)$ $\frac{1}{4} \times 4\sin^2 \frac{\pi}{8} \times \cos^2 \frac{\pi}{8} \Rightarrow \frac{1}{4} \times (2\sin \frac{\pi}{8} \cdot \cos \frac{\pi}{8})^2$.
 $Using Formula Sin 20 = 2SinB \cdot Cas \frac{\pi}{8}$
 $=)$ $\frac{1}{4} \times (\frac{1}{52})^2 = \frac{1}{8} Ans$

Or

Prove that
$$4 \sin \alpha \sin \left(\alpha + \frac{\pi}{3} \right) \sin \left(\alpha + \frac{2\pi}{3} \right) = \sin 3\alpha$$

Ans.) LHS = $4 \sin \alpha \sin \left(\alpha + \pi/3 \right) \sin \left(\alpha + 2\pi/3 \right)$
= $2\{ 2 \sin \alpha . \sin \left(\alpha + \pi/3 \right) . \sin \left(\alpha + 2\pi/3 \right)$
= $2\{ \cos \left(\alpha - \alpha - \pi/3 \right) - \cos \left(2\alpha + \pi/3 \right) \} \sin \left(\alpha + 2\pi/3 \right)$
= $2 \times 1/2 \sin \left(\alpha + 2\pi/3 \right) - 2 \sin \left(\alpha + 2\pi/3 \right) . \cos \left(2\alpha + \pi/3 \right)$
= $\sin \left(\alpha + 2\pi/3 \right) - \sin \left(3\alpha + \pi \right) - \sin \left(\alpha + 2\pi/3 \right)$
= $\sin 3\alpha = RHS$

INFINITY Think Beyond An Educational Institute , New Friends Colony, New Delhi -110025(Ph:8743011101)

Or

Q37.

By substitution of coordinates in the general equation of the circle given by $x^2 + y^2 + 2gx + 2fy + c = 0$ We have 40g + 6f + c = - 409

38g + 16f + c = - 425

4g - 18f + c = -85

From these three equations, we get

f = - 3

And c = -111

Hence, the equation of the circle is

$$x^{2} + y^{2} - 14x - 6y - 111 = 0$$

or $(x - 7)^{2} + (y - 3)^{2} = 13^{2}$

Therefore, the centre of the circle is (7, 3) and radius is 13.

$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$

Given:

Coordinates of foci = $(\pm 1, 0) \dots (i)$

We know that,

Coordinates of foci = (±c, 0) ...(ii)

: From eq. (i) and (ii), we get

It is also given that

Eccentricity
$$=\frac{1}{2}$$

we know that,

Eccentricity,
$$e = \frac{c}{a}$$

 $\Rightarrow \frac{1}{2} = \frac{1}{a} [\because c = 1]$
 $\Rightarrow a = 2$

Now, we know that,

$$c^{2} = a^{2} - b^{2}$$

$$\Rightarrow (1)^{2} = (2)^{2} - b^{2}$$

$$\Rightarrow 1 = 4 - b^{2}$$

$$\Rightarrow b^{2} = 4 - 1$$

$$\Rightarrow b^{2} = 3$$

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$

$$\Rightarrow \frac{x^{2}}{4} + \frac{y^{2}}{3} = 1$$

Q38.Calculate the mean deviation about mean for the following data.

X	2	4	6	8	10	12	14	16
f	2	2	4	5	3	2	1	1

Ans.)Mean=10.2

Mean deviation about Mean =2.44

To get more sample papers, practice papers, study material (Only for CBSE XI) Join my what sapp group at

https://chat.whatsapp.com/L3RcA9CYQJ5CXAw8fk2PpF