

CBSE Class XI Mathematics Sample Paper 05 As per pattern issued by CBSE for (2023-24)

Maximum Marks : 80

Time: 3 hrs.

General Instructions :

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 3 case based integrated units of assessment (04 marks each) with subparts of the values
- of 1, 1 and 2 marks each respectively.
- 6. Section E has 4 questions carrying 05 marks each.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs
- of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has

been provided in the 2marks questions of Section E

8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

Section A (Question 1 to 20 carry 1 mark)

Q1. In a class of 120 students numbered 1 to 120, all even numbered students opt for Physics, whose numbers are divisible by 5 opt for Chemistry and those whose numbers are divisible by 7 opt for both physics and chemistry. How many opt for none of the subjects?

a)17	b) 67	
c)80	d)53	

Q2. R={ (A, B) : $A^2 + B^2 = 25, A, B \in N$ on the sets has the following relation

a)(A,A) $\in R$ for all A	b) (A,B) and (B,A) $\in R$ for all A, B
c)(A,B),(B,C) and (A,C) $\in R$ for all A, B, C	d) none of these

Q.3. The range of the function f(x) = 3x - 2, is

a) (-∞,∞)	b) R – {3}
c)(- ∞, 0)	d)(0, −∞)

Q4.If A, B, C be three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then,

a)B=C	b) A=C
c)A=B=C	d)A=B

Q5. Four dice are rolled. The number of possible outcomes in which at least one dice show 2 is

a)1296	b) 671
c) 625	d)585

Q6 . The least value of n for which $\{(1 + i)/(1 - i)\}^n$	is real, is
a)1	b) 2
c)3	d) 4
Q7. Let U={1,2,340} ; A={x : x is divisible by	[,] 5 and 10} and B={x : x=5n ,n∈ N } then n(A∩B) is
a)0	b) 1
c)2	d) 3
Q8 . At what point of the parabola $x^2 = 9y$ is the at	oscissa three times that of ordinate
a) (1, 1)	b) (3, 1)
c) (-3, 1)	d) (-3, -3)
Q9 . The locus of a point, whose abscissa and ordin	nate are always equal is
a)x + y + 1 = 0	b) $x - y = 0$
c)x + y = 1	d)none of these.
Q10 . If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, then $\frac{dy}{dx}$ at x = 1 is :	
a) 1	b) 1/2
c) 1/√2	d) 0
Q11 . The solution of the inequality $ x - 1 < 2$ is	VITV
a) (1, ∞)	b) (-1, 3)
c)(1, -3)	d) (∞, 1)
Q.12 . The value of cos 5π is	BEYOND
a)0	b) 1
c)-1	d)none of these
Q.13 If repetition of the digits is allowed, then the	e number of even natural numbers having three digits is
a)250	b) 350
c)450	d)550
Q14 .The mean deviation about mean for the data	a : 7 , 6 ,4 , 3 , 8 , 2 is:
	b) 1
c) 2	d) 3
Q15 . The tangent of an angle between the lines $\frac{x}{a}$ are	$y + \frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$ is $\frac{2m}{n}$ where m and n respectively
Q15 . The tangent of an angle between the lines $\frac{x}{a}$ are a) $a^2 - b^2$. ab	$\frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$ is $\frac{2m}{n}$ where m and n respectively
Q15 . The tangent of an angle between the lines $\frac{x}{a}$ are are $a)a^{2} - b^{2}, ab$ $c)a^{2} + b^{2}, ab$	$\frac{y}{b} = 1 \text{ an } d \frac{x}{a} - \frac{y}{b} = 1 \text{ is} \frac{2m}{n} \text{ where m and n respectively}$ $\frac{b}{ab}, a^2 - b^2$ $\frac{b}{ab}, a^2 + b^2$

Q16. The point (-2, -3, -4) lies in the

a) First Octant	b) seventh Octant
c) second octant	d) Eighth Ocatant

Q17. If $\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$, then x is

a)90	b) 100
c)80	d)95

Q18. If A and B are two given sets, then $A \cap (A \cap B)'$ is equal to

a)A	b) B'
с)ф	d)A-B

Q19. Assertion (A) The domain of the real function f defined by $f(x) = \sqrt{x-1}$ is $R - \{1\}$

Reason (R) The range of the function defined by $f(x) = \sqrt{x-1}$ is $[0,\infty)$

a)Both assertion and reason are true and reason is	b)Both assertion and reason are true but reason is		
the correct explanation of assertion	not the correct explanation of assertion		
c)Assertion is true but reason is false.	d) Assertion is false but reason is true.		

Q.20 Assertion (A) : The value of $i^2 + i^4 + i^6 + \dots + i^{20}$ is 1.

Reason (R) : $i^{4n} = 1$, $n \in Z$.

a)Both assertion and reason are true and reason is	b)Both assertion and reason are true but reason is		
the correct explanation of assertion	not the correct explanation of assertion		
c)Assertion is true but reason is false.	d) Assertion is false but reason is true.		

SECTION B

SECTION D					
(Question	21 to	25 с	arry	2 mark))

Q21. If (1+i)(1+2i)(1+3i)(1+ni)= a+ib .Prove that 2.5.10.....(1+n²) = a² + b².

Q22. Prove that

$$\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x = \cos\left(\frac{\pi}{3} + x\right)$$

OR

Find the value of $\sqrt{3}$ cosec 20° – sec 20°

Q23. Find the equation of circle passing through (2,3) and centre lies on (3,-1)

Q24. The letters of the word "MUMMY" are placed at random in a row.What is the chance that letters at the extreme are both M?

OR

Events E and F are such that P (not E or not F) = 0.25 state whether E and F are mutually exclusive.

Q25. Solve the inequality
$$\frac{2x-1}{3} \ge \frac{3x-2}{4} - \left(\frac{2-x}{5}\right)$$

SECTION C (Question 26 to 31 carry 3 mark)

- **Q26.** If A = $\{2,4,6,9\}$ B = $\{4,6,18,27,54\}$ and a relation R from A to B is defined by R = $\{(a,b): a \in A, b \in B, a \text{ is a factor of b and } a < b\}$, then find in Roster form. Also find its domain and range.
- **Q27**. The points (1, 3) and (5, 1) are two opposite vertices of a rectangle. The other two vertices lie on line y = 2x + c. Find c and remaining two vertices.

OR

If the image of the point (2, 1) in a line is (4, 3) then find the equation of line.

Q28. If z is a complex number such that |z|=1, prove that $\left(\frac{z-1}{z+1}\right)$ is purely imaginary.

Q29. Using properties of sets and their complements prove that $(A \cup B) \cap (A \cup B') = A$.

Q30. Find the length of major, minor axis and latus rectum of the following ellipse, $16x^2 + 25y^2 = 400$

OR

Find equation of an ellipse having vertices $(0, \pm 5)$ and foci $(0, \pm 4)$.

Q31.Prove that

 $\cos^2 \alpha + \cos^2(\alpha + 120^0) + \cos^2(\alpha - 120^0) = \frac{3}{2}$

Q32. Let A, B be any two (non-empty) sets and R be a relation from A to B, then the inverse of relation R denoted by R⁻¹ is a relation from B to A i.e. $R^{-1} \subset B \times A$. Also $R^{-1} = \{(b, a) : (a, b) R\}$, Clearly $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$.

If A = { 2 , 3, 4 , 5 }, B = {3 ,6 ,7 , 10 } and a relation R from A to B is defined as R = { (x , y) : x divides y, $x \in A, y \in B$ }

Based above information, answer the following questions : -

- (i) Draw the arrow diagram of above relation.
- (ii) Write R⁻¹ as a set of ordered pairs.
- (iii) Write domain and range of R^{-1}

or

Write domain and range of R.

Q33. Rana visited a dentist for his tooth problem .The probability that he will have his tooth extracted is 0.06 ,the probability that he will have a cavity filled is 0.2 and the probability that he will have a tooth extracted or a cavity filed is 0.23 .Answer the below given questions :

(i)For any event E , What can be the minimum and maximum value of probability .

pg. 4

Mathematics XI - Mind Curve Practice Paper 05 By Deepika Bhati (2023-24)

Q38. Find the mean deviation about the mean for the following : Xi 5 10 15 20 25 7 Fi 4 6 3 5 To get more sample papers, practice papers, study material (Only for Maths CBSE XI-XII) Join my whatsapp group at https://chat.whatsapp.com/L3RcA9CYQJ5CXAw8fk2PpF AN EDUCATIONAL INSTITUTE

SECTION – A
(Question number ${\bf 1} \ to \ {\bf 20} \ carry \ {\bf 1} \ marks \ each$)

Q1.		В			
Q2.		В			
Q3.		Α			
Q4.		Α			
Q5.		Α			
Q6.		В			
Q7.		С			
Q8.		В			
Q9.		B			
Q10.		D			
Q11.		В			
Q12.					
Q13.		B			
015		B			
016.		B			
Q17.		B			
Q18.		D			
Q19.		D			
Q20.		В			
		SECTIO	N – B		
	(Question	number 21 to	25 carry 2 marks e	each)	
Q21.					
•					
Ans.)					
	$(1 + i)(1 + 2i)(1 + 3i) \dots (1 + ni)$	= a + ib			
	Taking modulus on both the sid	les, we get:			
	(1+i)(1+2i)(1+3i)	(1 + ni) =	a+ib		
	(1+i)(1+2i)(1+3i) (1+i) (1+2i) (1+3i)	$\dots \dots (1+ni) $ ca $\dots \dots (1+ni) $	n be written as		
	$\sqrt{1^2+1^2} imes \sqrt{1^2+2^2} imes \sqrt{1^2}$	$2+3^2 \times \ldots \times \sqrt{1}$	$+n^2 = \sqrt{a^2 + b^2}$	2	
	$\Rightarrow \sqrt{2} imes \sqrt{5} imes \sqrt{10} imes \ldots imes \sqrt{2}$	$1+n^2 = \sqrt{a^2} - \frac{1}{2}$	$+b^2$		
	Squaring on both the sides, we	get:			
	$2 imes 5 imes 10 imes\ldots imes (1+n^2)=0$	$a^{2} + b^{2}$			
		-			

Q22. Prove that
$$\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x = \cos\left(\frac{\pi}{3} + x\right)$$

Ans.) $\cos(A + B) = \cos A \cos B - \sin A \sin B$
Substituting,
 $A = \frac{\pi}{3}$ and $B = x$, we get
 $\cos\left(\frac{\pi}{3} + x\right) = \cos\left(\frac{\pi}{3}\right)\cos x - \sin\left(\frac{\pi}{3}\right)\sin x$
 $\cos\left(\frac{\pi}{3} + x\right) = \frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x$
 $\cos\left(\frac{\pi}{3} + x\right) = \frac{1}{2}(\cos x - \sqrt{3}\sin x)$
Q23. Find the equation of circle passing through (2,3) and centre lies on (3,-1)
Ans.) Let Eqn of Circle be $(2 - \sqrt{3} + (y + i)^2 = \sqrt{2} - \frac{1}{2})$
 $\cos(2i,3)$ Lies on it
 $3o(2i,3)$ Lies on it
 $3o($

Ans.) The total number of ways of arranging the letters = 5!/3!=20 (because M is present 3 times, so we divide by 3!)

Now, to get the favourable cases, we proceed as follows :

Put M at the first position and M at the last position

Now, we have to arrange M,U,Y only

The number of ways of doing this is 3!=6

So, total favourable ways =6

Total possible ways =20

Probability = 6/20=0.3

OR

Events E and F are such that P (not E or not F) = 0.25 state whether E and F are mutually exclusive.

Ans.) We have P (not E or not F) = 0.25 $\Rightarrow P(E' \cup F') = 0.25$

```
\Rightarrow P(E \cap F)' = 0.25
\Rightarrow P(E \cap F) = 1 - P(E \cap F)'
\Rightarrow P(E \cap F) = 1 - 0.25
\Rightarrow P(E \cap F) = 0.75 \neq 0
\Rightarrow E \cap F \neq \phi \Rightarrow Thus E and F are not mutually exclusive.
Q25. Solve the inequality \frac{2x-1}{3} \ge \frac{3x-2}{4} - \left(\frac{2-x}{5}\right)
Ans.) (2x-1)/3 \ge (3x-2)/4 - (2-x)/5
\Rightarrow (2x-1)/3 \ge (5(3x-2)-4(2-x))/20
\Rightarrow (2x-1)/3 \ge (15x-10-8+4x)/20
\Rightarrow (2x-1)/3 \ge (19x-18)/20
\Rightarrow 20(2x-1) \ge 3(19x-18)
\Rightarrow40x-20\geq57x-54
⇒-20+54≥57x-40
⇒34≥17x
⇒2≥x
Thus, all real numbers x, which are less than or equal to 2, are the solution, of of the given inequality.
Hence, the solution set of the given inequality is (-\infty, 2]
                                                          SECTION - C
                                   (Question number 26 to 31 carry 3 marks each)
Q26. If A = \{2,4,6,9\} B = \{4,6,18,27,54\} and a relation R from A to B is defined by R = \{(a,b): a \in A, b \in B, a is \}
a factor of b and a < b}, then find in Roster form. Also find its domain and range.
Ans.)
            Given, A = {2, 4, 6, 9} and B = {4, 6, 18, 27, 54} and
            R = \{(a, b): a \in A, b \in B, a is a
            factor of b and a<b}
            Roster form
            R = {(2, 4), (2, 6), (2, 18), (2, 54), (6, 18), (6, 54), (9, 18), (9, 27), (9, 54)}
            Domain of R = {2, 6, 9}
            Range of R = {4, 6, 18, 27, 54}
Q27. The points (1, 3) and (5, 1) are two opposite vertices of a rectangle. The other two vertices lie on line
y = 2x + c. Find c and remaining two vertices.
```

INFINITY Think Beyond An Educational Institute , New Friends Colony, New Delhi -110025(Ph:8743011101)

If the image of the point (2, 1) in a line is (4, 3) then find the equation of line.

Ans.) Let 'P' be the point (2,1) and Q be the image (4,3) of the point P in the line LM/ Mid point of PQ lies on LM. Mid point of PQ is (3,2) Slope of line PQ=1 \therefore slope of LH x slope of PQ=-1 \therefore slope of LH=-1 Equation of LM :x+y=5 Q28. If z is a complex number such that |z|=1, prove that $\left(\frac{z-1}{z+1}\right)$ is purely imaginary

Ans.)

Let z = x + iy. Then $|z|^2 = x^2 + y^2$. Therefore the condition |z| = 1 is equivalent to $x^2 + y^2 = 1$. Now $\frac{z-1}{z+1} = \frac{x + iy - 1}{x + iy + 1}$ $= \frac{(x - 1 + iy)(x + 1 - iy)}{(x + 1 + iy)(x + 1 - iy)}$ $= \frac{(x^2 + y^2 - 1) + 2iy}{(x + 1)^2 + y^2} = \frac{2iy}{(x + 1)^2 + y^2}$ by (1) Hence $\frac{z-1}{z+1}$ is purely imaginary when |z| = 1provided $z \neq -1$. When z = 1, we have $\frac{z-1}{z+1} = 0$. Now recall that according to the definition 2 given in §2, 0 is a pure imaginary number, since the point 0 which corresponds to z = 0 lies on both real and imaginary axes. So in this case also, $\frac{z-1}{z+1}$ is a pure imaginary number.

Q29. Using properties of sets and their complements prove that $(A \cup B) \cap (A \cup B') = A$. **Ans.)** L.H.S = $(A \cup B) \cap (A \cap B') = A \cup (B \cap B')$ (By distributive law) $= A \cup \emptyset$ (: $B \cap B' = \emptyset$) = A R.H.SQ30. Find the length of major, minor axis and latus rectum of the following ellipse, $16x^2 + 25y^2 = 400$ $16x^2+25y^2=400 \implies x^2/25 + y^2/16 = 1$ Ans.) Therefore, a=5,b=4 $c = \sqrt{a^2 - b^2} = 3$ Length of major axis: 2a=10 Length of minor axis: 2b=8 Eccentricity (e): 5/3,Latus rectum $=\frac{2b^2}{a}=\frac{2\times 16}{5}=\frac{32}{5}$ Find equation of an ellipse having vertices $(0, \pm 5)$ and foci $(0, \pm 4)$. $\frac{x^2}{h^2} + \frac{y^2}{a^2} = 1$ Ans.) Since the foci are on y axis, the equations of the ellipse is of the form Given: vertices are $(0, \pm 5)$, a = 5 Also, since foci are $(0, \pm 4)$, c = 4 and b² = a² - c² = 25 - 16 = 9 $\frac{x^2}{2} + \frac{y^2}{25} = 1$ Therefore, the equation of the hyperbola is Q31.Prove that $\cos^2 x + \cos^2(x + 120^0) + \cos^2(x - 120^0) = \frac{3}{2}$ Ans.) L.H.S. = $\cos^2 x + \cos^2 (x + 120^\circ) + \cos^2 (x - 120^\circ)$ $=\frac{1+\cos 2x}{2}+\frac{1+\cos 2(x+120^{\circ})}{2}+\frac{1+\cos 2(x-120^{\circ})}{2}....\left[\because \cos^{2}\theta=\frac{1+\cos 2\theta}{2}\right]$ $=rac{3}{2}+rac{1}{2}[\cos 2x+\cos (2x+240^\circ)+\cos (2x-240^\circ)]$ $=\frac{3}{2}+\frac{1}{2}(\cos 2x+\cos 2x\cos 240^{\circ}-\sin 2x\sin 240^{\circ}+\cos 2x\cos 240^{\circ}+\sin 2x\sin 240^{\circ})$ $=\frac{3}{2}+\frac{1}{2}(\cos 2x+2\cos 2x\cos 240^{\circ})$ $=\frac{3}{2}+\frac{1}{2}[\cos 2x+2\cos 2x\cos(180^{\circ}+60^{\circ})]$

 $=\frac{3}{2}+\frac{1}{2}[\cos 2x+2\cos 2x(-\cos 60^{\circ})]$

Mathematics XI - Mind Curve Practice Paper 05 Answer key By Deepika Bhati (2023-24)

(i) 5 elements (1,2), (3,2)(4,2) (72)(4,2) Q34. (i) 25 elemeto (1,3,2) (1,1,2) (4,3,2 (5,3,2) (6,62) (iii) first (k-1) rolls have no they than 2. 5 X 5 X 5 X - 5W X 2 (Iway) 1st 2nd 3rd (ky)th kth rode lotal elemats 5x5x ... 5 (R+) times = 5kt elements DR If 2 appear on first roll = 1 way $\frac{1}{k} 2 appen on (k-1)^n soll = 5^{k-2}$ $\frac{1}{k} 2 appen on k^{th} soll = 5^{k-1}$ $\frac{1}{100} \frac{1}{100} \frac{1}$ SECTION - E (Question number 35 to 38 carry 5 marks each) Q35.Solve for x, $\left|\frac{2x-1}{x-1}\right| > 2, x \in R$ Ans.) 2x-1/2-2 and 2x-172 $\frac{2x-1}{x-1} + 2x = 0$ and $\frac{2x-1}{x-1} - 2>0$ 2n-1+2n-2<0 and 2n-1-2n+2>0 n-1 2n-1-2n+2>0 $\frac{4\chi-3}{2}$ < 0 and 1 >0

INFINITY Think Beyond An Educational Institute, New Friends Colony, New Delhi -110025(Ph:8743011101)

INFINITY Think Beyond An Educational Institute, New Friends Colony, New Delhi -110025(Ph:8743011101)

$$\Rightarrow r = 2$$

$$\therefore a (1+r) = 3$$

$$\Rightarrow a = 1$$

Now $, p = ab$

$$\Rightarrow p = a \times ar = 2$$

And, $q = cd$

$$\Rightarrow q = ar^{2} \times ar^{3} = 2^{5} = 32$$

$$\therefore \frac{q+p}{q-p} = \frac{32+2}{32-2} = \frac{34}{30} = \frac{17}{15}$$

Q37.If p_1 and p_2 are the lengths of perpendiculars from the origin to the line $x \sec \theta + y \csc \theta = a$ and $x \cos \vartheta - y \sin \theta = a \cos 2\theta$ respectively then prove that $4P_1^2 + p_2^2 = a^2$

Ans.) The given lines are $x \sec \theta + y \csc \theta = a \dots (1)$

 $x \cos \theta - y \sin \theta = a \cos 2 \theta \dots (2)$

let p1 and p 2 are the perpendiculars from the origin upon the lines (1) and (2), respectively

$$p_{1} = \left| -\frac{a}{\sqrt{\sec^{2}\theta + \csc^{2}\theta}} \right| \text{ and } p_{2}$$

$$= \left| -\frac{a\cos 2\theta}{\sqrt{\cos^{2}\theta + \sin^{2}\theta}} \right|$$

$$\Rightarrow p_{1} = \frac{1}{2} |-a \times 2\sin\theta\cos\theta| \text{ and } p_{2}$$

$$= |-a\cos 2\theta|$$

$$\Rightarrow p_{1} = \frac{1}{2} |-a\sin 2\theta| \text{ and } p_{2}$$

$$= |-a\cos 2\theta|$$

 $\Rightarrow 4p_1^2 + p_2^2 = a^2 (\sin^2 2\theta + \cos^2 2\theta) = a^2$

Q38.Find the mean deviation about the mean for the following :

Xi	5	10	15	20	25
Fi	7	4	6	3	5

INFINITY Think Beyond An Educational Institute, New Friends Colony, New Delhi -110025(Ph:8743011101)

First we will calculate mean				
Xi	f	f _i x _i	$ \mathbf{x}_{i} - \overline{\mathbf{x}} $	$f_i \mathbf{x}_i - \bar{\mathbf{x}} $
5	7	7 × 5 = 35	5 - 14 = -9 = 9	7 × 9 = 63
10	4	4 × 10 = 40	10 - 14 = -4 = 4	4 × 4 = 16
15	6	6×15 =90	15 - 14 = -1 = 1	6×1=6
20	3	3 × 20 = 60	20 - 14 = 6 = 6	3×6 = 18
25	5	5 × 25 = 125	25 - 14 = 11 = 11	5 × 11 = 55
$\sum f_i$	= 25	$\sum f_i x_i = 350$		$\sum f_i x_i - \bar{x} = 158$
		Mean $\bar{x} = \frac{3}{2}$ $\bar{x} = 1$	$f(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$ $\frac{50}{25}$ $.4$ $\sum f_i x_i - x_i ^2$	<i>x</i>]
Putting $\sum f_i x_i - \bar{x} = 158$, $\sum f_i = 25$				
M.D. $(\bar{x}) = \frac{1}{25} \times 158$				

= 6.32

To get more sample papers, practice papers, study material (Only for CBSE XI) Join my whatsapp group at

https://chat.whatsapp.com/L3RcA9CYQJ5CXAw8fk2PpF

INFINITY Think Beyond An Educational Institute , New Friends Colony, New Delhi -110025(Ph:8743011101)