

CRPF PUBLIC SCHOOL, ROHINI MATHEMATICS PRACTICE PAPERS (WITH SOLUTIONS) SESSION 2024-25

(C) MATHEMATICS DEPARTMENT ,CRPF PUBLIC SCHOOL, ROHINI, DELHI

PRACTICE PAPER-01 (2024-25)

CLASS XII

Time: 3 hours

MATHEMATICS

Max Marks 80

General Instructions:

1. This Question paper contains - **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion Reasoning based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

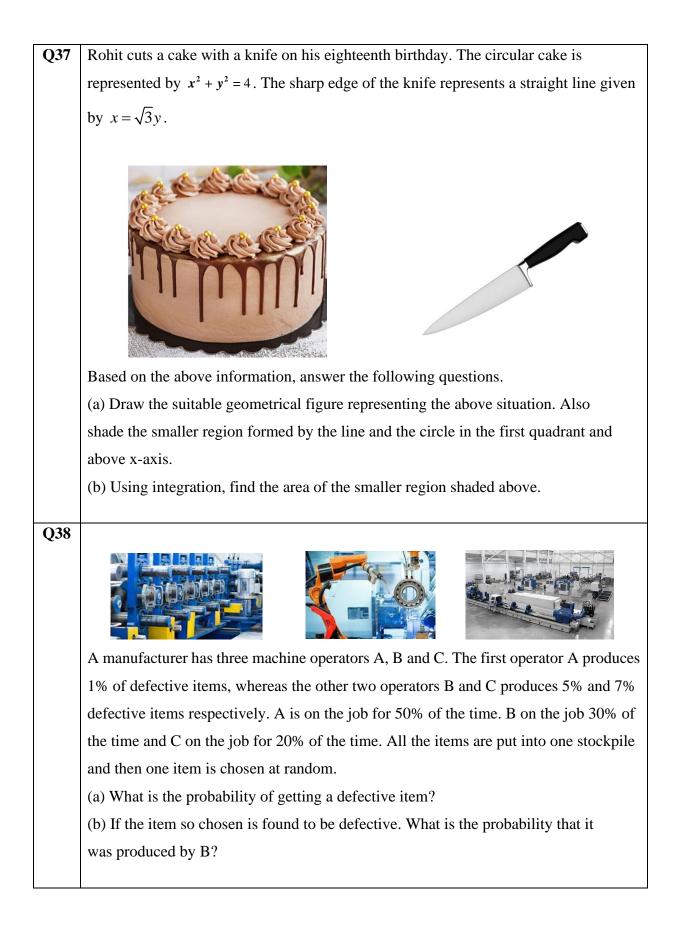
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section **E** has **3 source based/case based/passage based/integrated units of assessment** (4 marks each) with sub parts.

	SECTION – A (MCQ) 1 Mark Questions			
Q1	If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and	d A^2 is the identity	matrix, then x is equal	to
	(a) 0	(b) 1	(c) 2	(d) -1
Q2	If $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ -3 & 4 & 1 \end{bmatrix}$	$\left(\begin{array}{c} 0 \\ 0 \\ \end{array} \right)$, the value of $\left aa \right $	<i>ljA</i> is:	
	(a) 2^0	(b) 2^1	(c) 2^2	(d) 2^3
Q3			\vec{x}). $(\vec{x} + \vec{a}) = 12$, then the 1	
	$(a)\sqrt{12}$	(<i>b</i>) 12	(<i>c</i>) 13	(<i>d</i>) $\sqrt{13}$
Q4	If $f(x) = \begin{cases} \frac{3\sin x}{5x} \\ 2k \end{cases}$	$\frac{\tau x}{x}$, $x \neq 0$ is continue, $x = 0$	(c) 13 nuous at $x = 0$, then the 3π	value of <i>k</i> is:
	(a) $\frac{\pi}{10}$	(b) $\frac{5\pi}{10}$	(c) $\frac{3\pi}{2}$	(d) $\frac{3\pi}{5}$
Q5	The value of $\int \frac{1}{x}$	$\frac{1}{\cos^2(1+\log x)}dx$	is:	
	(a) $\tan(1+\log x)$	+c (b) $\cot(1+\log x)+c$	
	(c) $\sec(1+\log x)$	+c (d) $\cos(1+\log x)+c$	

Q6	The solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$ is:
	(a) $y + \sin^{-1} y = \sin^{-1} x + c$ (b) $\sin^{-1} y - \sin^{-1} x = c$
	(c) $\sin^{-1} y + \sin^{-1} x = c$ (d) $\sin^{-1} y - \sin^{-1} x = cxy$
Q7	Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and
	(0, 5).
	Let $F = 4x + 6y$ be the objective function. The minimum value of F occurs at: (a) Only (0, 2)
	(b) Only (3, 0)(c) the mid-point of the line segment joining the points (0, 2) and (3, 0)
	(d) any point on the line segment joining the points (0, 2) and (3, 0)
Q8	If $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and \vec{b} is a vector such that $\vec{a} \cdot \vec{b} = \vec{b} ^2$ and $ \vec{a} - \vec{b} = \sqrt{7}$, then $ \vec{b} $ is:
	equal to:
Q9	(a) $\sqrt{7}$ (b) $\sqrt{3}$ (c) 7 (d) 3 $\int_{-3}^{2} \frac{dx}{4+9x^{2}}$ is equal to:
	$\int_{0}^{1} \frac{1}{4+9x^2} dx = 0$
	(a) $\frac{\pi}{-}$ (b) $\frac{\pi}{-}$ (c) $\frac{\pi}{-}$ (d) $\frac{\pi}{-}$
Q10	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{9}$ (c) $\frac{\pi}{24}$ (d) $\frac{\pi}{36}$ If A and B are 2 × 2 square matrices and A + B = $\begin{bmatrix} 4 & -3 \\ 1 & 6 \end{bmatrix}$ and A - B = $\begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$,
	If A and B are 2 × 2 square matrices and A + B = $\begin{bmatrix} 1 & 6 \\ 1 & 6 \end{bmatrix}$ and A - B = $\begin{bmatrix} 2 & -1 \\ 5 & 2 \end{bmatrix}$,
	then the value of AB is:
	(a) $\begin{bmatrix} -7 & 5\\ 1 & -5 \end{bmatrix}$ (b) $\begin{bmatrix} 7 & -5\\ 1 & 5 \end{bmatrix}$ (c) $\begin{bmatrix} 7 & -1\\ 5 & -5 \end{bmatrix}$ (d) $\begin{bmatrix} 7 & -1\\ -5 & 5 \end{bmatrix}$
Q11	Feasible region (shaded) for a LPP is shown in the given figure. The maximum value of the $Z = 0.4x + y$ is:
	The maximum value of the $\Sigma = 0.4x + y$ is.
	(0, 40)
	(30, 20)
	0 (0, 0) (40, 0) X
	(a) 45 (b) 40 (c) 50 (d) 41
Q12	If $\begin{vmatrix} 2x+5 & 3\\ 5x+2 & 9 \end{vmatrix} = 0$, then the value of x is:
	(a) 13 (b) 3 (c) -13 (d) $\sqrt{3}$
	(a) 13 (b) 3 (c) -13 (d) 13


Q13	$\begin{bmatrix} 4 & \lambda & -3 \end{bmatrix}$
	If $A = \begin{bmatrix} 4 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{bmatrix}$, then A^{-1} exist if
	(a) $\lambda = 2$ (b) $\lambda \neq 2$ (c) $\lambda \neq -2$ (d) $\lambda = -2$
Q14	If A and D are two events such that $P(A) = \frac{1}{2} p(B) = \frac{1}{2} p(A) = \frac{1}{2$
	If A and B are two events such that $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P\left(\frac{A}{B}\right) = \frac{1}{4}$, then $P(A' \cap B')$
	equals
	(a) $\frac{1}{12}$ (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{3}{16}$
015	The internating factor for solving the differential equation
Q15	The integrating factor for solving the differential equation $dy = 2$.
	$x \frac{dy}{dx} - y = 2x^2$ is:
	(a) e^{-y} (b) e^{-x}
	(c) x (d) $\frac{1}{2}$
016	X
Q16	If $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta - \theta \cos \theta)$, then $\frac{dy}{dx}$ is :
	(a) $\cot \theta$ (b) $\tan \theta$ (c) $a \cot \theta$ (d) $a \tan \theta$
0.15	
Q17	If three points A, B and C have position vectors $\hat{i} + x \hat{j} + 3\hat{k}$, $3\hat{i} + 4\hat{j} + 7\hat{k}$ and
	$y\hat{i} - 2\hat{j} - 5\hat{k}$ respectively are collinear, then (x, y) is:
	(a) (2, -3) (b) (-2, 3) (c) (-2, -3) (d) (2, 3)
Q18	A line is such that it is inclined with y-axis and z-axis at 60° , then the angle this line is
	inclined with x-axis, is: (1) 20.8 (2) 75.8 (2) 60.8
	(a) 45° (b) 30° (c) 75° (d) 60°
	Assertion Reasoning Based Questions
	Assertion Reasoning Dased Questions
Q19	Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R
	Assertion (A) : Maximum value of $(\cos^{-1} x)^2$ is π^2 .
	Reason (R) : Range of the principal value branch of $\cos^{-1}x$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.
	In the light of the above statements, choose the most appropriate answer from the
	options given below a. Both A and R are correct and R is the correct explanation of A
	 b. Both A and R are correct but R is NOT the correct explanation of A
	c. A is correct but R is not correct
	d. A is not correct but \mathbf{R} is correct
Q20	Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R
L	

Assertion A:

If the cartesian equation of a line is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$, then its vector form is $\vec{r} = 5\hat{i} - 4j + 6k + \lambda(3\hat{i} + 7j + 2k)$ Reason R: The cartesian equation of the line which passes through the point (-2, 4, -5) and parallel to the line given by $\frac{x-3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ is $\frac{x+3}{-2} = \frac{y-4}{4} = \frac{z+8}{-5}$ In the light of the above statements, choose the most appropriate answer from the options given below a. Both A and R are correct and R is the correct explanation of A b. Both A and R are correct but R is NOT the correct explanation of A c. A is correct but **R** is not correct d. A is not correct but **R** is correct SECTION – B (Very Short Answer (VSA)-type questions) 2 Marks Each Let $f: R - \{-1\} \rightarrow R$ be defined by, $f(x) = \frac{1 + x^2}{1 + x}$. Show that f is not 1-1. Q21 OR If $y = \sin^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right)$, then show that $\frac{dy}{dx} = \frac{-1}{2\sqrt{1-x^2}}$ Q22 A sphere increases its volume at the rate of π cm³/s. Find the rate at which its surface area increases, when the radius is 1 cm. Q23 Find the magnitude of each of the two vectors \vec{a} and \vec{b} , having the same magnitude such that angle between them is 60° and their scalar product is $\frac{9}{2}$. OR Find the vector equation of the line passing through the point A(1,2,-1) and parallel to the line 5x - 25 = 14 - 7y = 35z. Differentiate $y = \tan^{-1} \left(\frac{1 + \cos x}{\sin x} \right)$ with respect to x. Q24 Using vectors, find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and 025 C(1, 5, 5). SECTION – C (Short Answer (SA)-type questions) 3 Marks Each Evaluate : $\int \frac{8}{(x+2)(x^2+4)} dx$ **Q26**

ar random, is transferred from the first bag to the second bag and then a ball is drawn at random from the second bag. Find the probability that the ball drawn is white.ORORTwo cards are drawn simultaneously (without replacement) from a well-shuffled part of \$2 cards. Let X denote the number of red cards drawn. Find the probability distribution of X. Also, find the mean of this distribution.Q28Evaluate : $\int_{0}^{\pi} \frac{(x-x^3)^{1/3}}{x^4} dx$ OROREvaluate: $\int_{0}^{\pi} \frac{x \tan x}{\sec x \cos ecx} dx$ Q29Solve the following differential equation: $x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x = y \sin\left(\frac{y}{x}\right)$; $y(t) = \frac{\pi}{2}$ ORORSolve the following Linear Programming Problem graphically: Maximise $Z = x + 2y$ Subject to the constraints: $x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0$ Q31EVENTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x+3}{3x+4}$. Show that f is one-one x onto.ORShow that the relation S in the set $A = \{x \in Z: 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b $ is divisible by 4]. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2+x}, x > - 2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 4) and B(3, 5, 9). Hence, find the coordinates of the points on this line			
Two cards are drawn simultaneously (without replacement) from a well-shuffled prof 52 cards. Let X denote the number of red cards drawn. Find the probabil distribution of X. Also, find the mean of this distribution. Q28 Evaluate : $\int_{1/3}^{1} \frac{(x - x^3)^{1/3}}{x^4} dx$ OR Evaluate: $\int_{0}^{1} \frac{x \tan x}{\sec x . \cos ecx} dx$ Q29 Solve the following differential equation: $x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x = y \sin\left(\frac{y}{x}\right)$; $y(1) = \frac{\pi}{2}$ OR Solve the following differential equation: $\frac{dy}{dx} = -\frac{x + y \cos x}{1 + \sin x}$ Q30 Solve the following Linear Programming Problem graphically: Maximise $Z = x + 2y$ Subject to the constraints: $x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0$ Q31 Evaluate: $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ SECTION – D (Long Answer (LA)-type questions) 5 Marks Each Q32 Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one x onto. OR Show that the relation S in the set $A = \{x \in Z: 0 \le x \le 10\}$ given by $S = \{(a, b): a, b \in Z, a - b $ is divisible by 4}. Show that S an equivalence relation. Find the set of all elements related to 1. Q33 Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing. Q34 Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line for the points on the points on the points on this line	One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball, drawn at random, is transferred from the first bag to the second bag and then a ball is drawn at random from the second bag. Find the probability that the ball drawn is white.		
Two cards are drawn simultaneously (without replacement) from a well-shuffled prof 52 cards. Let X denote the number of red cards drawn. Find the probabil distribution of X. Also, find the mean of this distribution. Q28 Evaluate : $\int_{1/3}^{1} \frac{(x - x^3)^{1/3}}{x^4} dx$ OR Evaluate: $\int_{0}^{1} \frac{x \tan x}{\sec x . \cos ecx} dx$ Q29 Solve the following differential equation: $x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x = y \sin\left(\frac{y}{x}\right)$; $y(1) = \frac{\pi}{2}$ OR Solve the following differential equation: $\frac{dy}{dx} = -\frac{x + y \cos x}{1 + \sin x}$ Q30 Solve the following Linear Programming Problem graphically: Maximise $Z = x + 2y$ Subject to the constraints: $x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0$ Q31 Evaluate: $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ SECTION – D (Long Answer (LA)-type questions) 5 Marks Each Q32 Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one x onto. OR Show that the relation S in the set $A = \{x \in Z: 0 \le x \le 10\}$ given by $S = \{(a, b): a, b \in Z, a - b $ is divisible by 4}. Show that S an equivalence relation. Find the set of all elements related to 1. Q33 Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing. Q34 Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line for the points on the points on the points on this line	OR		
$ \begin{array}{c c} f \\ \hline & \int_{1/3}^{1} \frac{(\mathbf{x} - \mathbf{x}^3)^{1/3}}{\mathbf{x}^4} d\mathbf{x} \\ \hline & \mathbf{OR} \\ Evaluate: \int_{0}^{\pi} \frac{x \tan x}{\sec x. \cos ecx} dx \\ \end{array} $ $ \begin{array}{c c} \hline & \mathbf{Q29} \\ Solve the following differential equation: x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x = y\sin\left(\frac{y}{x}\right); y(1) = \frac{\pi}{2} \\ \hline & \mathbf{OR} \\ \end{array} \begin{array}{c c} Solve the following Linear Programming Problem graphically: \\ Maximise Z = x + 2y \\ Subject to the constraints: \\ x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0 \\ \end{array} \begin{array}{c c} \hline & \mathbf{Q31} \\ \end{array} \begin{array}{c c} Evaluate: \int \frac{x^2 + x + 1}{x^2 - 1} dx \\ \end{array} \begin{array}{c c} \hline & \mathbf{SECTION - D (Long Answer (LA)-type questions) 5 Marks Each \\ \end{array} \begin{array}{c c} \hline & \mathbf{Q32} \\ \end{array} \begin{array}{c c} Consider f: R - \left\{ -\frac{4}{3} \right\} \rightarrow R - \left\{ \frac{4}{3} \right\} \text{ given by } f(x) = \frac{4x + 3}{3x + 4}. \text{ Show that } f \text{ is one-one } a \\ \end{array} \begin{array}{c c} \text{OR} \\ \text{Show that the relation } S \text{ in the set } A = \left\{ x \in 2: 0 \le x \le 10 \right\} \text{ given by} \\ s = \left\{ (a,b): a, b \in Z, a-b \text{ is divisible by } 4 \right\}. \text{ Show that } S \text{ an equivalence relation. Find the sub-intervals in which } f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2 \\ \text{ increasing or decreasing.} \\ \end{array} \begin{array}{c c} \text{Q34} \\ \text{Find the equations of the line passing through the points A(1, 2, 3) \\ \text{ and B(3, 5, 9). Hence, find the coordinates of the points on this line and b \\ \end{array} $	Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards. Let X denote the number of red cards drawn. Find the probability distribution of X. Also, find the mean of this distribution.		
$ \begin{array}{c c} f \\ \hline \begin{array}{l} \int_{1/3}^{1} \frac{(\mathbf{x} - \mathbf{x}^3)^{1/3}}{\mathbf{x}^4} d\mathbf{x} \\ \mathbf{OR} \\ Evaluate: \int_{0}^{\pi} \frac{x \tan x}{\sec x \cdot \cos ecx} dx \\ \hline \mathbf{Q29} \\ Solve the following differential equation: x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x = y \sin\left(\frac{y}{x}\right); y(1) = \frac{\pi}{2} \\ \mathbf{OR} \\ \hline \mathbf{OR} \\ \hline \mathbf{Solve the following Linear Programming Problem graphically: \\ Maximise Z = x + 2y \\ Subject to the constraints: \\ x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0 \\ \hline \mathbf{Q31} \\ \hline \mathbf{Evaluate}: \int \frac{x^2 + x + 1}{x^2 - 1} dx \\ \hline \mathbf{SECTION - D (Long Answer (LA)-type questions) 5 Marks Each} \\ \hline \mathbf{Q32} \\ \hline \mathbf{Consider} \ f : R - \left\{ -\frac{4}{3} \right\} \rightarrow R - \left\{ \frac{4}{3} \right\} \text{ given by } f(x) = \frac{4x + 3}{3x + 4}. \text{ Show that } f \text{ is one-one } a \\ \hline \text{onto.} \\ \hline \mathbf{OR} \\ \hline \mathbf{Show that the relation S in the set } A = \left\{ x \in Z : 0 \le x \le 10 \right\} \text{ given by} \\ s = \left\{ (a,b): a, b \in Z, a-b \text{ is divisible by } 4 \right\}. \text{ Show that } S \text{ an equivalence relation. Find the sub-intervals in which } f(x) = \log (2 + x) - \frac{x}{2 + x}, x > - 2 \\ increasing or decreasing. \\ \hline \mathbf{Q34} \\ \hline \mathbf{Find the equations of the line passing through the points } \mathbf{A}(1, 2, 3) \\ \hline \mathbf{A}(3, 5, 9). Hence, find the coordinates of the points on this line points on this line points on the set of the points on this line points on the set of the points on this line points on the set of the points on this line points on the set of the points on this line points on the points on this line points on the points on this line points on the points on this line points on this line points on this line points on this line points $	Evaluate :		
Q29Solve the following differential equation: $x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x = y \sin\left(\frac{y}{x}\right)$; $y(1) = \frac{\pi}{2}$ ORSolve the following differential equation: $\frac{dy}{dx} = -\frac{x + y \cos x}{1 + \sin x}$ Q30Solve the following Linear Programming Problem graphically: Maximise $Z = x + 2y$ Subject to the constraints: $x + 2y \ge 100$; $2x - y \le 0$; $2x + y \le 200$; $x, y \ge 0$ Q31Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ Q32Consider $f : R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one x onto.Q32Consider $f : R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one x onto.Q33Find the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a, b): a, b \in Z, a - b $ is divisible by 4}. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log(2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points $A(1, 2, 3)$ and $B(3, 5, 9)$. Hence, find the coordinates of the points on this line	$\int_{1/3}^{1} \frac{(x-x^3)^{1/3}}{x^4} dx$ OR		
Solve the following differential equation: $x \frac{dx}{dx} \sin\left(\frac{x}{x}\right) + x = y \sin\left(\frac{x}{x}\right)$, $y(t) = \frac{1}{2}$ OR Solve the following Linear Programming Problem graphically: Maximise $Z = x + 2y$ Subject to the constraints: $x + 2y \ge 100$; $2x - y \le 0$; $2x + y \le 200$; $x, y \ge 0$ Q31 Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ SECTION – D (Long Answer (LA)-type questions) 5 Marks Each Q32 Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one x onto. OR Show that the relation S in the set $A = \{x \in Z: 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1. Q33 Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}$, $x > -2$ increasing or decreasing. Q34 Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line for the set of the points on this line for the set of the points on this line for the set of the points on this line for the points on the point of the points on the point of the points on the point of the points on the point point of the points on the point of the points on the point point point point point points on the point	Evaluate: $\int_{0}^{\pi} \frac{x \tan x}{\sec x \cdot \cos ecx} dx$		
Solve the following differential equation: $\frac{dy}{dx} = -\frac{x+y\cos x}{1+\sin x}$ Q30Solve the following Linear Programming Problem graphically: Maximise $Z = x + 2y$ Subject to the constraints: $x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0$ Q31Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ GENERTION – D (Long Answer (LA)-type questions) 5 Marks Each Q32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.ORShow that the relation S in the set $A = \{x \in Z: 0 \le x \le 10\}$ given by $S = \{(a,b):a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log(2 + x) - \frac{x}{2 + x}, x > - 2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line			
Q30Solve the following Linear Programming Problem graphically: Maximise Z = x + 2y Subject to the constraints: x + 2y ≥ 100; 2x - y ≤ 0; 2x + y ≤ 200; x, y ≥ 0Q31Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ Q32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.Q32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.Q33Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line	UK		
Q30Solve the following Linear Programming Problem graphically: Maximise Z = x + 2y Subject to the constraints: x + 2y ≥ 100; 2x - y ≤ 0; 2x + y ≤ 200; x, y ≥ 0Q31Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ Q32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.Q32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.Q33Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line	Solve the following differential equation: $\frac{dy}{dx} = -\frac{x + y \cos x}{y \cos x}$		
Maximise Z = x + 2y Subject to the constraints: $x + 2y \ge 100; \ 2x - y \le 0; \ 2x + y \le 200; \ x, y \ge 0$ Q31Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.OR Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line	$dx = \frac{1}{1+\sin x}$		
Maximise $Z = x + 2y$ Subject to the constraints: $x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0$ Q31Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32Consider $f : R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.OR Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a,b):a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points $A(1, 2, 3)$ and $B(3, 5, 9)$. Hence, find the coordinates of the points on this line	Solve the following Linear Programming Problem graphically:		
$x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0$ Q31Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.ORShow that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given byS = $\{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log(2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line			
Q31Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$ SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.ORShow that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line	Subject to the constraints:		
Evaluate : $\int \frac{1}{x^2 - 1} dx$ SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.ORShow that the relation S in the set $A = \{x \in Z: 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > - 2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line	$x + 2y \ge 100; 2x - y \le 0; 2x + y \le 200; x, y \ge 0$		
Evaluate : $\int \frac{x^2 - 1}{x^2 - 1} dx$ SECTION - D (Long Answer (LA)-type questions) 5 Marks EachQ32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x + 3}{3x + 4}$. Show that f is one-one a onto.ORShow that the relation S in the set $A = \{x \in Z: 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > - 2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line			
Q32Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x+3}{3x+4}$. Show that f is one-one a onto.ORShow that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points $A(1, 2, 3)$ and $B(3, 5, 9)$. Hence, find the coordinates of the points on this line	Evaluate : $\int \frac{x^3 + x + 1}{x^2 - 1} dx$		
Consider $f: R - \{-\frac{1}{3}\} \rightarrow R - \{\frac{1}{3}\}$ given by $f(x) = \frac{1}{3x+4}$. Show that f is one-one a onto. OR Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by } 4\}$. Show that S an equivalence relation. Find the set of all elements related to 1. Q33 Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2+x}, x > -2$ increasing or decreasing. Q34 Find the equations of the line passing through the points $A(1, 2, 3)$ and $B(3, 5, 9)$. Hence, find the coordinates of the points on this line	SECTION – D (Long Answer (LA)-type questions) 5 Marks Each		
 OR Show that the relation S in the set A = {x ∈ Z : 0 ≤ x ≤ 10} given by S = {(a,b): a, b ∈ Z, a-b is divisible by 4}. Show that S an equivalence relation. Find the set of all elements related to 1. Q33 Find the sub-intervals in which f(x) = log (2 + x) - x/(2 + x), x > - 2 increasing or decreasing. Q34 Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line 	Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x+3}{3x+4}$. Show that f is one-one and		
Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by $S = \{(a,b): a, b \in Z, a-b \text{ is divisible by 4}\}$. Show that S an equivalence relation. Find the set of all elements related to 1.Q33Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing.Q34Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line	onto.		
 S = {(a,b): a, b ∈ Z, a-b is divisible by 4}. Show that S an equivalence relation. Find the set of all elements related to 1. Q33 Find the sub-intervals in which f(x) = log (2 + x) - x/(2 + x), x > -2 increasing or decreasing. Q34 Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line 			
Q33 Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing. Q34 Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line	Show that the relation <i>S</i> in the set $A = \{x \in Z : 0 \le x \le 10\}$ given by		
Q33 Find the sub-intervals in which $f(x) = \log (2 + x) - \frac{x}{2 + x}, x > -2$ increasing or decreasing. Q34 Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line	$S = \{(a,b): a, b \in \mathbb{Z}, a-b \text{ is divisible by } 4\}$. Show that <i>S</i> an equivalence relation. Find		
 Q33 Find the sub-intervals in which f(x) = log (2 + x) - x/(2 + x), x > - 2 increasing or decreasing. Q34 Find the equations of the line passing through the points A(1, 2, 3 and B(3, 5, 9). Hence, find the coordinates of the points on this line for the points of the line passing through the points on this line points of the line passing through the points of the poi			
Q34Find the equations of the line passing through the points A(1, 2, 3)Q34Find the equations of the line passing through the points A(1, 2, 3)and B(3, 5, 9). Hence, find the coordinates of the points on this line	the set of an elements felated to 1.		
Q34Find the equations of the line passing through the points A(1, 2, 3)Q34Find the equations of the line passing through the points A(1, 2, 3)and B(3, 5, 9). Hence, find the coordinates of the points on this line	X X		
Q34 Find the equations of the line passing through the points $A(1, 2, 3)$ and $B(3, 5, 9)$. Hence, find the coordinates of the points on this line			
and $B(3, 5, 9)$. Hence, find the coordinates of the points on this lin	increasing or decreasing.		
and $B(3, 5, 9)$. Hence, find the coordinates of the points on this lin	Find the equations of the line passing through the points $A(1, 2, 3)$		
which are at a distance of 14 limits from point B			
	which are at a distance of 14 units from point B.		
OR	OR		

Find the value of b so that the lines $\frac{x-1}{2} = \frac{y-b}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$ are intersecting lines. Also, find the point of intersection of these given lines. Using Matrix Method, solve the following system of linear equations. Q35 x + 2y - 3z = -42x + 3y + 2z = 23x - 3y - 4z = 11SECTION - E (Case Study Based Questions) 4 Marks Each Read the following passage and answer the questions given below. **Q36** In an elliptical sport field, the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (i) If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x. (ii) Find the critical point of the function. (iii) Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area. OR (iii) Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

PRACTICE PAPER-02 (2024-25)

CLASS XII

MATHEMATICS

Max Marks 80

Time: 3 hours

General Instructions :

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQs and 02 Assertion-Reason (A-R) based questions of 1 mark each. Section B has 05 questions of 2 marks each.

Section C has 06 questions of 3 marks each.

Section D has 04 questions of 5 marks each.

Section E has 03 Case-study / Source-based / Passage-based questions with sub-parts (4 marks each).

- 3. There is no overall choice. However, internal choice has been provided in
 - 02 Questions of Section B
 - 03 Questions of Section C
 - 02 Questions of Section D
 - 02 Questions of Section E

You have to attempt only one of the alternatives in all such questions.

SECTION A

Q1. If A is a square matrix of order 3 such that |adj A| = 144, the value of $|A^T|$ is:

(a) 0 (b) 144 (c) \pm 12 (d) 12

Q2. If $0 < x < \pi$ and the matrix $\begin{bmatrix} 2\sin x & 3 \\ 1 & 2\sin x \end{bmatrix}$ is singular, the value(s) of x is:

(a)
$$\pi/_3$$
 (b) $\pi/_6$ (c) $5\pi/_6$ (d) $2\pi/_3$, $\pi/_3$

Q3 If the points A(3,-2), B(k,2) and C(8,8) are collinear, then the value of k is: (a) 2 (b) -3 (c) 4 (d) -4

Q4. If $A = \begin{bmatrix} 0 & x+2 \\ 2x-3 & 0 \end{bmatrix}$ is a skew-symmetric matrix, then x is equal to: (a) $\frac{1}{3}$ (b) 5 (c) 3 (d) 1

Q5. If
$$y = \tan^{-1}(\sec x + \tan x)$$
, then $\frac{dy}{dx}$ is:
(a) $1/2$ (b) $-1/2$ (c) 1 (d) none of these

Q6. If the function $f(x) = \begin{cases} \frac{1-\cos 4x}{8x^2} , x \neq 0 \\ k , x=0 \end{cases}$ is continuous at x=0, then value of k is: (c) $\frac{1}{2}$ (d) $-\frac{1}{2}$ (b) 2 (a) 1 Q7. $\int \frac{x+3}{(x+4)^2} e^x dx = ?$ (a) $\frac{e^x}{x+4} + c$ (b) $\frac{e^x}{x+3} + c$ (c) $\frac{1}{(x+4)^2} + c$ (d) $\frac{e^x}{(x+4)^2} + c$ Q8. $\int \frac{dx}{e^x + e^{-x}}$ is equal to (b) $\tan^{-1}(e^{-x}) + C$ (d) $\log(e^{x} + e^{-x}) + C$ (a) $\tan^{-1}(e^x) + C$ (c) $\log(e^{x} - e^{-x}) + C$ Q10. The integrating factor of the differential equation $(x \log x)\frac{dy}{dx} + y = 2\log x$ is: (a) $\log(\log x)$ (b) e^{x} (c) $\log x$ (d) xQ11. Sum of order and degree of the differential equation $\left(\frac{d^2 y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^5 + 4x = 0$ is

(a) 6 (b) 3 (c) 4 (d) 5

Q12. The p.v.'s of the points A, B, C are $\hat{i} + x\hat{j} + 3\hat{k}$, $3\hat{i} + 4\hat{j} + 7\hat{k}$ and $y\hat{i} - 2\hat{j} - 5\hat{k}$ respectively, if A,B,C are collinear, then (x, y) = ?

(a)(2,-3) (b)(-2,3) (c)(0,3) (d)(2,3)

Q13. If \vec{a} and \vec{b} be two vectors such that $|\vec{a}| = |\vec{b}| = \sqrt{2}$ and $\vec{a} \cdot \vec{b} = -1$, then the angle between \vec{a} and \vec{b} is:

(a) $\pi/3$ (b) $\pi/4$ (c) $2\pi/3$ (d) $\frac{\pi}{2}$

O14. The diagonals of a parallelogram are represented by the vectors $\vec{d_1} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{d_2} = \hat{i} - 3\hat{j} + 4\hat{k}$. The area of the parallelogram is:

(d) $\frac{3\sqrt{2}}{2}$ sq. units (a) $7\sqrt{3}$ sq.units (b) $5\sqrt{3}$ sq.units (c) $3\sqrt{5}$ sq.units

Q15. If a line makes angle $\pi/3$ and $\pi/4$ with x-axis and y-axis respectively, then the acute angle made by the line with z-axis is: (a) $\pi/2$ (b) $\pi/3$ (c) $\pi/4$ (d) $5\pi/12$

Q16. A bag contains 5 red, 7 green and 4 white balls, three balls are drawn one after the other without replacement. Then the probability that the balls drawn are white, green and green respectively, is: 3 7

(a)
$$\frac{1}{20}$$
 (b) $\frac{3}{20}$ (c) $\frac{7}{20}$ (d)

Q17.

The solution set of the inequation 3x + 5y < 7 is :

- (a) whole xy-plane except the points lying on the line 3x + 5y = 7.
- (b) whole xy-plane along with the points lying on the line 3x + 5y = 7.
- (c) open half plane containing the origin except the points of line 3x + 5y = 7.
- (d) open half plane not containing the origin.

018.

The number of corner points of the feasible region determined by the constraints $x - y \ge 0$, $2y \le x + 2$, $x \ge 0$, $y \ge 0$ is :

- (b) 3 (a) 2
- (c) (d) 5 4

Assertion Reasoning Based Questions

Q19. Given below are two statements: one is labeled as Assertion A and the other is labeled as Reason R. Assertion (A) The equation of the line passing through (1,1,2) and (2,3,-1) is $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{-3}$

Reason (R)

Equation of the line passing through $(x_{1,y_{1,z_{1}}})$ and $(x_{2,y_{2,z_{2}}})$ is $\frac{x-x_{1}}{x_{2-x_{1}}} = \frac{y-y_{1}}{y_{2-y_{1}}} = \frac{z-z_{1}}{z_{2-z_{1}}}$

- (a) Both A and R are correct and R is the correct explanation of A
- (b) Both A and R are correct but R is NOT the correct explanation of A

(c) A is correct but **R** is not correct

(d) A is not correct but **R** is correct

Q20. Given below are two statements: one is labeled as **Assertion A** and the other is labeled as **Reason R**.

Assertion (A): Range of $[\sin^{-1} x + 2 \cos^{-1} x]$ is $[0, \pi]$.

Reason (*R*): Principal value branch of $\sin^{-1} x$ has range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

In the light of the above statements, choose the *most appropriate* answer from the options given below

- (a) Both A and R are correct and R is the correct explanation of A
- (b) Both A and R are correct but R is NOT the correct explanation of A
- (c) **A** is correct but **R** is not correct
- (d) **A** is not correct but **R** is correct

SECTION B

Q21. If $\vec{a}=\hat{i}+2j+3\hat{k}$, $\vec{b}=2\hat{i}+4j-5\hat{k}$ represents two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram.

OR

If \vec{a} , \vec{b} are unit vectors such that the vector $\vec{a} + 3\vec{b}$ is perpendicular to the vector $7\vec{a} - 5\vec{b}$ and $\vec{a} - 4\vec{b}$ is perpendicular to $7\vec{a} - 2\vec{b}$, then find the angle between \vec{a} and \vec{b} .

Q22. If A, B, C and D are the points with position vectors

 $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} - \hat{j} + 3\hat{k}$, $2\hat{i} - 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ respectively, then find the projection of \overline{AB} along \overline{CD} .

Q23. Write the following in the simplest form: $sin\left(2tan^{-1}\sqrt{\frac{1-x}{1+x}}\right)$

OR

A relation R is defined on a set of real numbers \mathbb{R} as

 $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \cdot \mathbf{y} \text{ is an irrational number}\}.$

Check whether R is reflexive, symmetric and transitive or not.

Q24. If $y = \left[\log \left(x + \sqrt{x^2 + 1} \right) \right]^2$, show that $(1 + x^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = 2$.

Q25. Sand is pouring from a pipe at the rate of 12 cm^3/sec The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?

SECTION C

Q26.

Evaluate :

$$\int_{-2}^{2} \frac{x^2}{1+5^x} dx$$

Evaluate: $\int_{1}^{4} |x - 1| + |x - 2| + |x - 3| dx$

Q27. Evaluate the following integral x: $\int \frac{3x+1}{(x-2)^2(x+2)} dx$

Q28.

Find : $\int \frac{x^3 + x}{x^4 - 9} \, \mathrm{d}x.$

Q29. Solve the following differential equation:

$$(tan^{-1}y - x)dy = (1 + y^2)dx$$

OR

Solve the following differential equation:

$$x\frac{dy}{dx} - y + xsin\left(\frac{y}{x}\right) = 0$$
, given that when $x = 2, y = \pi$

Q30.

Let *X* denote the number of colleges where you will apply after your results and P(X = x)denotes your probability of getting admission in *x* number of colleges. It is given that

$$P(X = x) = \begin{cases} kx & \text{, if } x = 0 \text{ or } 1\\ 2kx & \text{, if } x = 2\\ k(5-x) & \text{, if } x = 3 \text{ or } 4\\ 0 & \text{, if } x > 4 \end{cases}$$

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in

- (i) exactly one college
- (ii) atmost 2 colleges
- (iii) atleast 2 colleges.

There is a group of 50 people who are patriotic out of which 20 believe in non-violence. Two persons are selected at random out of them. Find the probability distribution for the selected persons who are non-violent. Also find the mean of the distribution.

Q31. Solve the following Linear Programming Problem graphically:

Maximize z=2x+5y subject to the following constraints: $2x+4y \le 8$ $3x+y \le 6$ $x+y \le 4$ $x \ge 0, y \ge 0$

SECTION D

Q32. If $A = \begin{pmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{pmatrix}$, find A^{-1} . Using A^{-1} solve the system of equations: $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 2, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 5, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = -4$. **OR** Find the product of matrices $A = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ and use it for solving the equations x + y + 2z = 1, 3x + 2y + z = 7, 2x + y + 3z = 2.

Q33.

Find the area of the minor segment of the circle $x^2 + y^2 = 4$ cut off by the line x = 1, using integration.

Q34. Consider $f: R_+ \to [-9, \infty)$ given by $f(x) = 5x^2 + 6x - 9$. Check it is bijective or not. Justify your answer.

OR Show that the relation S in set \mathbb{R} of real numbers defined by

 $S = \{(a, b) : a \le b^3, a \in \mathbb{R}, b \in \mathbb{R}\}$

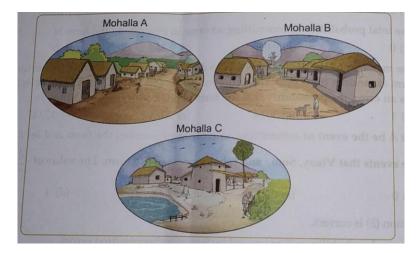
is neither reflexive, nor symmetric, nor transitive.

Q35. Dr. Dewan residing in Delhi went to see an apartment of 3BHK in Noida. The window of the

house was in the form of rectangle surmounted by a semicircular opening having a perimeter of the window 10m as shown in the figure.

If x and y represents the length and breadth of the rectangular region, what is the relation between the variables?

- (i) What is the area of the window in terms of x?
- (ii) What should be the value of *x* for the area to be maximum?


SECTION E

(Question numbers 36 to 38 carry 4 mark each.)

This section contains three Case-study/Passage based questions. First two questions have three sub-parts (i), (ii) and (iii) of marks 1, 1, and 2 respectively. Third question has two sub-parts of 2 marks each.

Q36. In a village there are three mohallas A, Band C. In A,60% farmers believe in new technology of

agriculture, while in B, 70% and in C, 80%. A farmer is selected at random from village.

- (i) What is the conditional probability that a farmer believe in new technology if he belongs to mohalla A?
- (ii) What is the total probability that a farmer believe in new technology of agriculture?

(iii) District agriculture officer selects a farmer at random in a village and he found that selected farmer believe in new technology of agriculture, what is the probability that the farmer belongs to mohalla B ?

Q37.

Ravindra started to run a small factory of manufacturing LED bulbs. He can sell x bulbs at a price of \neq (300 – x) each. The cost price of x bulbs is \neq (2x² – 60x + 18).

Based on the above information, answer the following questions :

(i) Find the profit function P(x) for selling x bulbs.

(ii) What is
$$\frac{d}{dx}[P(x)]$$
?

(iii) (a) How many bulbs should he sell to earn maximum profit ?

OR

- (iii) (b) How many bulbs is he selling if he is incurring a loss of $\neq 18$?
- Q38. Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines $\vec{r} = \lambda(\hat{i} + 2\hat{j} \hat{k})$ and $\vec{r} = (3\hat{i} + 3\hat{j}) + \mu(2\hat{i} + \hat{j} + \hat{k})$ respectively.

Based on the above information, answer the following questions:

- (i) Find the shortest distance between the given lines.
- (ii) Find the point at which the motorcycles may collide.

PRACTICE PAPER-3 (2024-25)

CLASS XII

MATHEMATICS

Max Marks 80

GENERAL INSTRUCTIONS

Time: 3 hours

(*i*) This Question paper contains- **five sections A, B, C, D** and **E.** Each section is compulsory. However, there are internal choices in some questions.

(ii) Section A has 18 MCQ's and 2 Assertion Reasoning based Questions of 1 mark each.

(iii)Section B has 5 Very short Answer (VSA) – type questions of 2 mark each.

(*iv*) Section C has 6 Short Answer (SA) – type questions of 3 mark each.

(v) Section D has 4 Long Answer (LA) – type questions of 5 mark each.

(*vi*) Section E has 3 source based / case based /integrated units of assessment (4 mark each) with sub parts.

SECTION A

Q1. Let $A = \{3,5\}$ then the number of reflexive relations on A is

(a) 2 (b) 4 (c) 0 (d) 8

Q2. If the points A(3,-2), B(k,2) and C(8,8) are collinear, then the value of k is:

(a) 2 (b) -3 (c) 5 (d) -4

Q3. If $\begin{bmatrix} x & 2 \\ 3 & x-1 \end{bmatrix}$ is a singular matrix, then the product of all possible values of x is:

(a) 6 (b) -6 (c) 0 (d) -7

Q4. If |A| = |KA|, where A is a square matrix of order 2, then sum of all possible values of K is

(a) 1 (b) -1 (c) 2 (d) 0
Q5. If
$$A.(adjA) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then the value of $|A| + |adjA|$ is equal to:

(a) 12 (b) 9 (c) 3 (d) 27

Q6. If
$$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x & , x \neq 0\\ 2k & , x = 0 \end{cases}$$
 is continuous at $x = 0$, the value of k is:
(a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{3}{2}$
Q7. If $x = a \cos^2 \theta$, $y = b \sin^2 \theta$, then $\frac{dy}{dx}$ is:

(a)
$$-\frac{a}{b}$$
 (b) $\frac{a}{b}\cot\theta$ (c) $-\frac{b}{a}$ (d) none of these

Q8. The feasible region for an LPP is always a _____ polygon.

(a) Convex (b) Concave (c) the feasible region depends on LPP (d) none of these

Q9.
$$\int_{0}^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx = ?$$
(a) 0 (b) $\pi/2$ (c) $\pi/4$ (d) none of these

Q10. What is the product of order and the degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 \sin y + \left(\frac{dy}{dx}\right)^3 \cos y = \sqrt{y}$$
(a) 4 (b) 6 (c) 3 (d) not defined
Q11. The integrating factor of the differential equation $x\log x \frac{dy}{dx} + y = \frac{2\log x}{x}$ is
(a) x (b) $\log(\log x)$ (c) $\log x$ (d) $\frac{1}{x}$
Q12. The projection of the vector $\vec{a} = 3\hat{i} - \hat{j} - 2\hat{k}$ on $\vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}$ is:
(a) $\sqrt{14}/2$ (b) $14/\sqrt{2}$ (c) $\sqrt{14}$ (d) 7

Q13. If $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then the angle between \vec{a} and \vec{b} is:

(a) $\pi/6$ (b) $2\pi/3$ (c) $5\pi/3$ (d) $\pi/3$

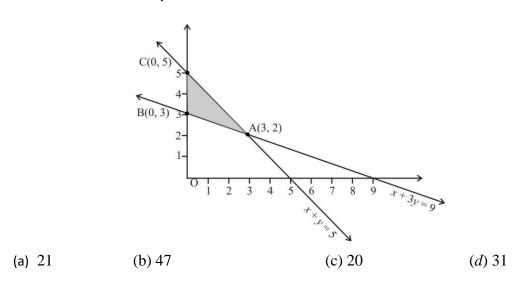
Q14. If $\vec{a} + \vec{b} = \hat{i}$ and $\vec{a} = 2\hat{i} - 2\hat{j} + 2\hat{k}$, then $|\vec{b}|$ is:

(a) $\sqrt{14}$ (b) 3 (c) $\sqrt{12}$ (d) $\sqrt{17}$

Q15. The value of λ for which the lines $\frac{x-5}{7} = \frac{2-y}{5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{2y-1}{\lambda} = \frac{z}{3}$ are at right angles, is

(a) 2 (b) 4 (c)
$$-2$$
 (d) -4

Q16. Direction cosines of a line perpendicular to both x - axis and z - axis are


(a)
$$1,0,1$$
 (b) $1,1,1$ (c) $0,0,1$ (d) $0,1,0$

Q17. $\int e^{-x} \left(\frac{x+1}{x^2}\right) dx$ is equal to:

(a)
$$\frac{e^{-x}}{x} + C$$
 (b) $\frac{e^{x}}{x} + C$ (c) $\frac{e^{x}}{x^{2}} + C$ (d) $-\frac{e^{-x}}{x} + C$

Q18. The feasible region for an LPP is shown in the following figure. Then the minimum value

of Z = 11x + 7y is

Assertion Reasoning Based Question

Q19. Given below are two statements: one is labeled as Assertion A and the other is labeled as Reason R.

Assertion (A) : The value of $\cot\left(\cos^{-1}\frac{7}{25}\right)$ is $\frac{7}{24}$ Reason (R): $\cot^{-1}(\cot\theta) = \theta$ for all $\theta \in (0, \pi)$ In the light of the above statements, choose the *most appropriate* answer from the options given below.

- a) Both A and R are correct and R is the correct explanation of A
- b) Both A and R are correct but R is NOT the correct explanation of A
- c) A is correct but **R** is not correct
- d) A is not correct but **R** is correct

Q20. Given below are two statements: one is labeled as Assertion A and the other is labeled as Reason R.

Assertion (A): If $P(A) = \frac{3}{5}$ and $P(B) = \frac{1}{5}$, then $P(A \cap B) = \frac{4}{5}$, if A, B are independent events.

Reason (**R**): If A and B are independent events, then $P(A \cap B) = P(A)$. P(B)

In the light of the above statements, choose the *most appropriate* answer from the options given below.

- a) Both A and R are correct and R is the correct explanation of A
- b) Both A and R are correct but R is NOT the correct explanation of A
- c) A is correct but **R** is not correct
- d) A is not correct but **R** is correct

SECTION B

Q21. Evaluate the following:
$$\sin\left(\frac{\pi}{6} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$$

OR

Write the following in the simplest form: $y = \sin^{-1} \left(\frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right)$

Q22. Find the intervals in which the following function is increasing or decreasing.

$$f(x) = -2x^3 - 9x^2 - 12x + 1$$

Q23. Write the position vector of a point dividing the line segment joining points A and B with position vectors \vec{a} and \vec{b} externally in the ratio 1: 4, where

 $\vec{a} = 2\hat{i} + 3j + 4\hat{k}$ and $\vec{b} = -\hat{i} + j + \hat{k}$.

OR

If the sum of two unit vector is a unit vector, show that the magnitude of their difference is

 $\sqrt{3}$.

Q24. Find the area of the parallelogram whose diagonals are determined by the vectors $\vec{a} = 2\hat{i} + 3j - 6\hat{k}$ and $\vec{b} = 3\hat{i} - 4j - \hat{k}$. Q25. Evaluate the following : $\int \frac{\sin 3x}{\sin x} dx$

SECTION C

Q26. If
$$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$$
, prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.

OR

Find
$$\frac{dy}{dx}$$
 if: $y = e^{\sin x} + (\tan x)^x$

Q27. Evaluate: $\int \frac{e^x}{(1+e^x)(2+e^x)} dx$

Q28. Find the area of the region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$.

Q29. Solve the following differential equation:

$$\left[y - x\cos\left(\frac{y}{x}\right)\right] dy = \left[2x\sin\left(\frac{y}{x}\right) - y\cos\left(\frac{y}{x}\right)\right] dx$$
OR

Find the particular solution of the differential equation

$$(x^{2}+1)\frac{dy}{dx}-2xy=(x^{4}+2x^{2}+1)\cos x$$
, given that $y(0)=0$

Q30. Two persons A and B throw a coin alternately till one of them gets a 'head' and win the game. Find their respective probabilities of winning if A starts first.

Q31. Solve the following linear programming problem (L.P.P) graphically.

Minimize Z = 5x + 10y

Subject to constraints:

$$x + 2y \le 120; x + y \ge 60; x - 2y \ge 0; x, y \ge 0$$

SECTION D

Q32. Find the inverse of matrix
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & -2 & 2 \\ 4 & 2 & -3 \end{bmatrix}$$

Hence solve the given system of equations:

2x+3y+4z=17, 3x-2y+2z=11, 4x+2y-3z=8.

Q33. Let $A = \{1, 2, 3, ..., 9\}$ and R is the relation in $A \times A$ defined by $(a, b)R(c, d) \Leftrightarrow a + d = b + c$ for all (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)]

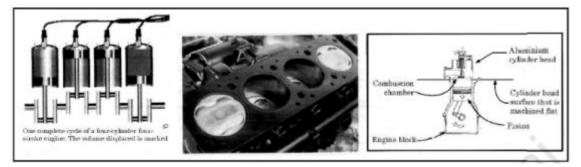
OR

Let
$$A = R - \{3\}$$
 and $B = R - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Is f one-one and onto? Justify your answer.

Q34. A perpendicular is drawn from the point (0, 2, 7) to the line $\frac{x+2}{-1} = \frac{y-1}{3} = \frac{z-3}{-2}$.

Find (*i*) foot of perpendicular (*ii*) length of perpendicular (*iii*) image of point in the line.

OR


Find the shortest distance between the following pair of parallel lines:

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}; \frac{x-3}{4} = \frac{3-y}{-6} = \frac{z+5}{12}$$

Q35. Evaluate :
$$\int_{-5}^{0} (|x|+|x+2|+|x+5|) dx$$

SECTION E

Q36. Read the following passage and answer the questions given below:

Engine displacement is the measure of the cylinder volume swept by all the pistons of the piston engine. The piston moves inside the cylinder bore. The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area $75\pi cm^2$.

- (i) If the radius of the cylinder is *r cm* and height is *h cm*, then write the volume *V* of the cylinder in terms of radius *r*
- (ii) Find $\frac{dV}{dr}$
- (iii) Find the radius of the cylinder when its volume is maximum

OR

For maximum volume, h > r. State true or false and justify.

Q37. Read the following passage and answer the questions given below:

To reduce global warming environmentalists and scientists came up with an innovative idea of developing a spherical bulb that would absorb harmful gases and thereby reduce global warming. But during the process of absorption the bulb would get inflated and it's radius would be increasing at 1cm/sec.

(i) Find the rate at which the volume increases when radius is 6 cm.

(ii) At an instant when volume was increasing at the rate of 400π cm³/sec find the rate at which it's surface area is increasing?

Q38. A shopkeeper sells three types of flower seeds A1, A2, A3. They are sold in the form of a mixture, where the proportions of these seeds are 4: 4: 2 respectively. The germination rates of three types of seeds are 45%, 60%, and 35% respectively.

Based on the above information:

- (a) Calculate the probability that a randomly chosen seed will germinate.
- (b) Calculate the probability that the seed is of type A2, given that a randomly chosen seed germinates.

PRACTICE PAPER-4 (2024-25)

CLASS XII

Time: 3 hours

MATHEMATICS

Max Marks 80

General Instructions:

1. This Question paper contains - **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

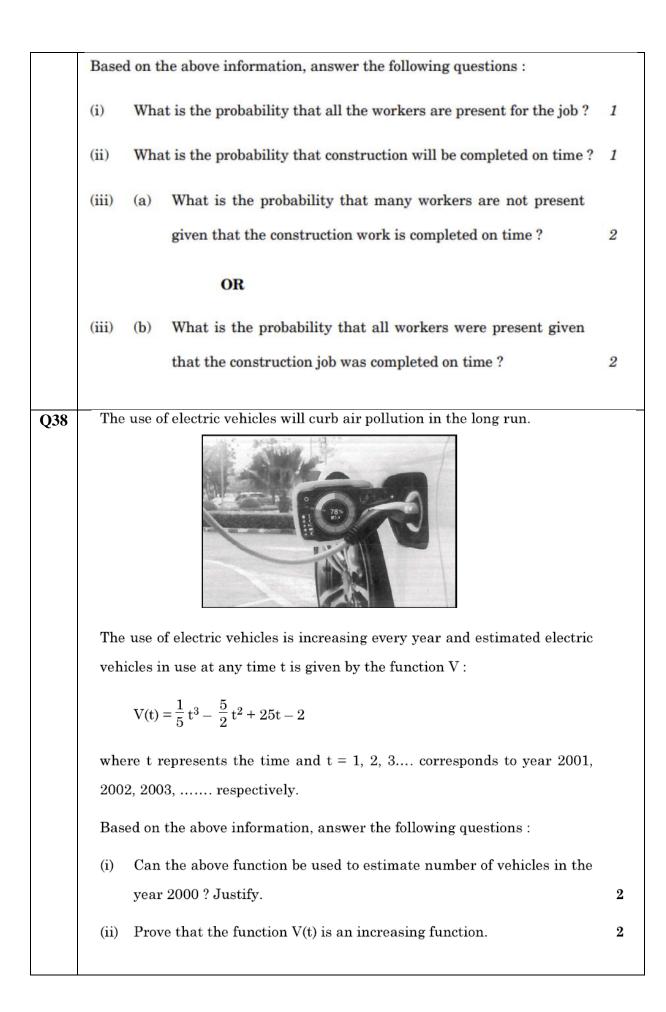
Section A has 18 MCQ's and 02 Assertion Reasoning based questions of 1 mark each.
 Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
 Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section **E** has **3 source based/case based/passage based/integrated units of assessment** (4 marks each) with sub parts.

	SECTION – A (MCQ) 1 Mark Questions
Q1	If $A = \begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ and $2A + B$ is a null matrix, then B is equal to :
	(a) $\begin{bmatrix} 6 & 8 \\ 10 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} -6 & -8 \\ -10 & -4 \end{bmatrix}$
	(c) $\begin{bmatrix} 5 & 8\\ 10 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -8\\ -10 & -3 \end{bmatrix}$
Q2	Let A be a 3×3 matrix such that $ adj A = 64$. Then $ A $ is equal to :
	(a) 8 only (b) -8 only
	(c) 64 (d) $8 \text{ or } -8$
Q3	If $A = \begin{bmatrix} 1 & 4 & x \\ z & 2 & y \\ -3 & -1 & 3 \end{bmatrix}$ is a symmetric matrix, then the value of $x + y + z$
	If $A = \begin{bmatrix} z & 2 \end{bmatrix} y$ is a symmetric matrix, then the value of $x + y + z$
	$\begin{bmatrix} -3 & -1 & 3 \end{bmatrix}$
	is:
	(a) 10 (b) 6
	(c) 8 (d) 0
Q4	The interval in which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing, is
	(a) $(-1, \infty)$ (b) $(-2, -1)$
	(a) $(-1, \infty)$ (b) $(-2, -1)$ (c) $(-\infty, -2)$ (d) $[-1, 1]$

Q5	If the set A contains 5 elements and t one-one and onto mapping from A to H	he set B contains 6 elements, then the number of both B is
	(a) 720	(b) 120
	(c) 30	(d) 0
Q6		nd the degree of the differential
	equation $\left(\frac{d^3y}{dx^3}\right)^2 + 3x\left(\frac{d^2y}{dx^2}\right)$	$\int_{0}^{4} = \log x$, is :
	(a) 5	(b) 6
07	(c) 7	(d) 4
Q7	The number of feasible solu given as	tions of the linear programming problem
	Maximize z = 15x + 30y subject	et to constraints :
	$3x + y \le 12, x + 2y \le 10, x \ge 0$	$, y \ge 0$ is
	(a) 1	(b) 2
	(c) 3	(d) infinite
Q8	In \triangle ABC, $\overrightarrow{AB} = \overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ a	and $\overrightarrow{AC} = 3\hat{i} - \hat{j} + 4\hat{k}$. If D is mid-point of
	BC, then vector \overrightarrow{AD} is equal to	D :
	(a) $4\dot{i} + 6\dot{k}$	(b) $2\dot{i} - 2\dot{j} + 2\dot{k}$
	(c) $\hat{i} - \hat{j} + \hat{k}$	(d) $2\dot{i} + 3\dot{k}$
Q9	$\frac{\pi}{6}$	
	$\int_{0}^{6} \sec^{2}(x - \frac{\pi}{6}) dx \text{ is equal to :}$	
	(a) $\frac{1}{\sqrt{3}}$	(b) $-\frac{1}{\sqrt{3}}$
	(c) $\sqrt{3}$	(d) $-\sqrt{3}$
Q10	If for a square matrix A, A^2 - value of x + y is :	$-3A + I = O$ and $A^{-1} = xA + yI$, then the
	(a) -2	(b) 2
	(c) 3	(d) -3
Q11	The value of $(\overset{\land}{i} \times \overset{\land}{j}) \cdot \overset{\land}{j} + (\overset{\land}{j})$	$\times \hat{i}$). \hat{k} is:
	(a) 2	(b) 0
	(c) 1	(d) – 1


Q12	of a	corner points of the feasible region in the graphical representation linear programming problem are $(2, 72)$, $(15, 20)$ and $(40, 15)$. If $8x + 9y$ be the objective function, then :
	(a)	z is maximum at $(2, 72)$, minimum at $(15, 20)$
	(b)	z is maximum at (15, 20), minimum at (40, 15)
	(c)	z is maximum at (40, 15), minimum at (15, 20)
	(d)	z is maximum at (40, 15), minimum at (2, 72)
Q13	If A	$ =2$, where A is a 2×2 matrix, then $ 4A^{-1} $ equals :
	(a)	4 (b) 2
	(c)	8 (d) $\frac{1}{32}$
Q14	If P($A \cap B$ = $\frac{1}{8}$ and $P(\overline{A}) = \frac{3}{4}$, then $P\left(\frac{B}{A}\right)$ is equal to :
	(a) (c)	$\frac{1}{2}$ (b) $\frac{1}{3}$
	(c)	$\frac{1}{6}$ (d) $\frac{2}{3}$
Q15	If a v	vector makes an angle of $\frac{\pi}{4}$ with the positive directions of both x-axis
	and	y-axis, then the angle which it makes with positive z-axis is :
	(a)	$\frac{\pi}{4} (b) \frac{3\pi}{4}$
	(c)	$\frac{\pi}{2}$ (d) 0
Q16	The	general solution of the differential equation x dy $-\left(1+x^2\right)$ dx = dx
	is:	
	(a)	$y = 2x + \frac{x^3}{3} + C$ (b) $y = 2 \log x + \frac{x^3}{3} + C$
	(c)	$y = \frac{x^2}{2} + C$ (d) $y = 2 \log x + \frac{x^2}{2} + C$
Q17	If y =	$=\frac{\cos x - \sin x}{\cos x + \sin x}, \text{ then } \frac{dy}{dx} \text{ is :}$
		$-\sec^2\left(\frac{\pi}{4}-\mathbf{x}\right)$ (b) $\sec^2\left(\frac{\pi}{4}-\mathbf{x}\right)$
	(c)	$\log \left \sec \left(\frac{\pi}{4} - \mathbf{x} \right) \right \qquad (d) \qquad -\log \left \sec \left(\frac{\pi}{4} - \mathbf{x} \right) \right $

Q18	Direction cosines of the line $\frac{x-1}{2} = \frac{1-y}{3} = \frac{2z-1}{12}$ are :		
	(a) $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$ (b) $\frac{2}{\sqrt{157}}, -\frac{3}{\sqrt{157}}, \frac{12}{\sqrt{157}}$		
	(c) $\frac{2}{7}, -\frac{3}{7}, -\frac{6}{7}$ (d) $\frac{2}{7}, -\frac{3}{7}, \frac{6}{7}$		
	Assertion Reasoning Based Questions		
Q19	Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R		
	Assertion (A): Range of $[\sin^{-1} x + 2 \cos^{-1} x]$ is $[0, \pi]$.		
	<i>Reason (R)</i> : Principal value branch of $\sin^{-1} x$ has range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.		
	 In the light of the above statements, choose the <i>most appropriate</i> answer from the options given below a. Both A and R are correct and R is the correct explanation of A b. Both A and R are correct but R is NOT the correct explanation of A c. A is correct but R is not correct d. A is not correct but R is correct 		
Q20	Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R		
	Assertion (A): A line through the points $(4, 7, 8)$ and $(2, 3, 4)$ is parallel		
	to a line through the points $(-1, -2, 1)$ and $(1, 2, 5)$.		
	Reason (R): Lines $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ are parallel if $\overrightarrow{b_1} \cdot \overrightarrow{b_2} = 0$.		
	In the light of the above statements, choose the <i>most appropriate</i> answer from the		
	 options given below a. Both A and R are correct and R is the correct explanation of A b. Both A and R are correct but R is NOT the correct explanation of A c. A is correct but R is not correct d. A is not correct but R is correct 		
	SECTION – B (Very Short Answer (VSA)-type questions) 2 Marks Each		
Q21	Evaluate $\sin^{-1}\left(\sin\frac{3\pi}{4}\right) + \cos^{-1}\left(\cos\pi\right) + \tan^{-1}(1).$		
	OR		
	Draw the graph of $\cos^{-1} x$, where $x \in [-1, 0]$. Also, write its range.		

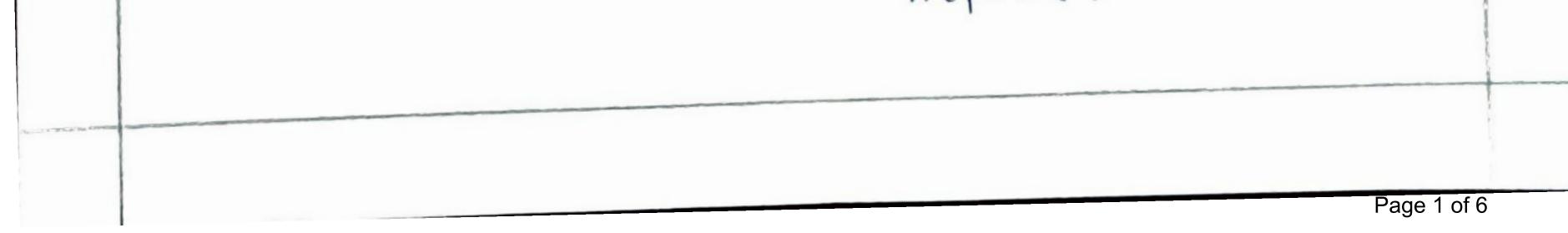
Q22	If the projection of the vector $\hat{i} + \hat{j} + \hat{k}$ on the vector $p\hat{i} + \hat{j} - 2\hat{k}$ is $\frac{1}{3}$,
	then find the value(s) of p.
Q23	A particle moves along the curve $3y = ax^3 + 1$ such that at a point with
Q25	x-coordinate 1, y-coordinate is changing twice as fast at x-coordinate.
	Find the value of a.
	OR
	Show that the function $f(x) = \frac{16 \sin x}{4 + \cos x} - x$, is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.
Q24	Find the coordinates of points on line $\frac{x}{1} = \frac{y-1}{2} = \frac{z+1}{2}$ which are at a
	distance of $\sqrt{11}$ units from origin.
Q25	Sketch the region bounded by the lines $2x + y = 8$, $y = 2$, $y = 4$ and the
	y-axis. Hence, obtain its area using integration.
	SECTION – C (Short Answer (SA)-type questions) 3 Marks Each
Q26	Determine graphically the minimum value of the following objective
	function :
	z = 500x + 400y
	subject to constraints
	$x + y \le 200,$
	$x \ge 20,$ $y \ge 4y$
	$y \ge 4x,$ $y \ge 0.$
Q27	Two balls are drawn at random one by one with replacement from an
	urn containing equal number of red balls and green balls. Find the
	probability distribution of number of red balls. Also, find the mean of
	the random variable.
	OR $=$ 1
	A and B are independent events such that $P(A \cap \overline{B}) = \frac{1}{4}$ and
	$P(\overline{A} \cap B) = \frac{1}{6}$. Find P(A) and P(B).
Q28	4
X =0	Find : $\int \frac{x^4}{(x-1)(x^2+1)} dx$
	OR
	Find :
	$\int \frac{\cos\theta}{\sqrt{3-3\sin\theta-\cos^2\theta}} \mathrm{d}\theta$

Q29	Find the general solution of the differential equation :		
	$(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$		
	OR		
	Find the particular solution of the differential equation		
	1		
	$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$, given that $y = 1$ when $x = 0$.		
Q30	Find the area of the following region using integration :		
	$((1, 2), 2^2 < 0, 2^2 < 0, 2^2 < 1)$		
Q31	$\{(x, y) : y^2 \le 2x \text{ and } y \ge x - 4\}$		
QUI	Differentiate $\sec^{-1}\left(\frac{1}{\sqrt{1-x^2}}\right)$ w.r.t. $\sin^{-1}\left(2x\sqrt{1-x^2}\right)$.		
	SECTION – D (Long Answer (LA)-type questions) 5 Marks Each		
Q32	[3 2 1]		
	If matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, find A^{-1} and hence solve the following		
	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
	system of linear equations :		
	3x + 2y + z = 2000		
	4x + y + 3z = 2500		
	x + y + z = 900		
Q33	Find the vector and the Cartesian equations of a line passing		
	through the point $(1, 2, -4)$ and parallel to the line joining the		
	points A(3, 3, -5) and B(1, 0, -11). Hence, find the distance		
	between the two lines.		
	OR		
	A line l passes through point (-1, 3, -2) and is perpendicular to both		
	the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. Find the vector equation		
	of the line l . Hence, obtain its distance from origin.		
Q34	Evaluate :		
	$\pi/2$		
	$\int \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$		
	0		
	 ОR		
	Evaluate : $\int_{0}^{\frac{\pi}{2}} \sin 2x \tan^{-1} (\sin x) dx$		
L			

Q35		
200	A function f: $[-4, 4] \rightarrow [0, 4]$ is given by $f(x) = \sqrt{16 - x^2}$. Show that f is an	
	onto function but not a one-one function. Further, find all possible values	
	of 'a' for which $f(a) = \sqrt{7}$.	
0.04	SECTION – E (Case Study Based Questions) 4 Marks Each	
Q36	Sooraj's father wants to construct a rectangular garden using a brick wall	
	on one side of the garden and wire fencing for the other three sides as	
	shown in the figure. He has 200 metres of fencing wire.	
	Based on the above information, answer the following questions :	
	(i) Let 'x' metres denote the length of the side of the garden	
	perpendicular to the brick wall and 'y' metres denote the length of	
	the side parallel to the brick wall. Determine the relation	
	representing the total length of fencing wire and also write $A(x)$,	
	the area of the garden. 2	
027	(ii) Determine the maximum value of A(x). 2	
Q37	A building contractor undertakes a job to construct 4 flats on a plot along	
	with parking area. Due to strike the probability of many construction	
	workers not being present for the job is 0.65. The probability that many	
	are not present and still the work gets completed on time is 0.35 . The	
	probability that work will be completed on time when all workers are	
	present is 0.80 .	
	Let : E_1 : represent the event when many workers were not present for	
	the job;	
	\mathbf{E}_2 : represent the event when all workers were present; and	
	E : represent completing the construction work on time.	

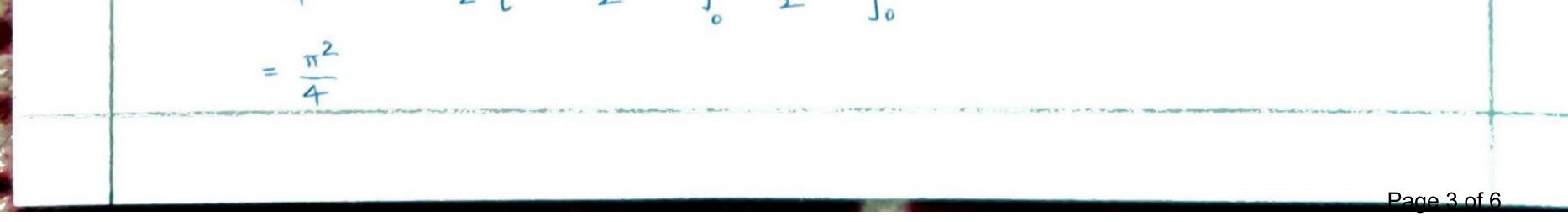
CRPF PUBLIC SCHOOL, ROHINI

MATHEMATICS MARKING SCHEME SESSION 2024-25


(C) MATHEMATICS DEPARTMENT ,CRPF PUBLIC SCHOOL, ROHINI, DELHI

ഗ

 (\mathbf{G})


MARKING SCHEME: PRACTICE PAPER-01 (2024-25)

$$\begin{array}{l} \underbrace{\begin{array}{l} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{$$

$$\begin{aligned} \frac{2}{3} \quad \frac{1}{2} = 4\pi i \left(\frac{1+6\pi x}{5\pi\pi x}\right) = 4\pi i \left(\frac{2(x^{3} dy_{2})}{25\pi\pi dy_{2}(x^{3} dy_{2})}\right) = 4\pi i \left(6t \frac{x}{2}\right) = 4\pi i \left(4\pi x\left(\frac{x}{2} - \frac{x}{2}\right)\right) \\ \therefore & \frac{1}{2} = \frac{\pi}{2} - \frac{x}{2} \Rightarrow \frac{dy}{dx} = -\frac{1}{2} \\ \frac{2}{25\pi\pi dy_{2}(x^{3} dy_{2})} = 4\pi i \left(6t \frac{x}{2}\right) = 4\pi i \left(4\pi x\left(\frac{x}{2} - \frac{x}{2}\right)\right) \\ \therefore & \frac{1}{2} = \frac{\pi}{2} - \frac{x}{2} \Rightarrow \frac{dy}{dx} = -\frac{1}{2} \\ \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \left(16\pi x \cdot \frac{1}{8}t\right) = \frac{1}{2} \left(15\pi x \cdot \frac{1}{8}t\right) \\ \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2}t\right) \left(\frac{1}{2}t\right) + \frac{1}{8}t\right) \\ \frac{1}{2} \left(\frac{1}{2}t\right) + \frac{1}{2}t\right) \\ \frac{1}{2} \left(\frac{1}{2}t\right) + \frac{1}{8}t\right) \\ \frac{1}{8}t} \\ \frac{1}{8}t\right) \\ \frac{$$

$$\frac{dy}{dx} = \frac{y}{x} - \frac{1}{\sin(\frac{y}{x})}$$
Put $\frac{y}{x} = v$ ie $y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$

$$\Rightarrow v + x\frac{dv}{dx} = v - \frac{1}{\sin v} \Rightarrow x\frac{dv}{dx} = - cobecv \Rightarrow \frac{dv}{cobecv} = -\frac{dx}{x} \Rightarrow \int sinvdv = -\int \frac{dx}{x}$$

$$\Rightarrow -cosv = -log |x| + C \Rightarrow cosv = log |x| - C \Rightarrow cos(\frac{y}{x}) = log |x| + c'$$
when $x = 1$, $y = \frac{\pi}{2} \Rightarrow C = c$... solution is $cos(\frac{y}{2x}) = log |x|$

$$OR$$

$$\frac{dx}{dx} + (\frac{cosx}{1+sinx}) \cdot y = -\frac{x}{1+sinx}$$

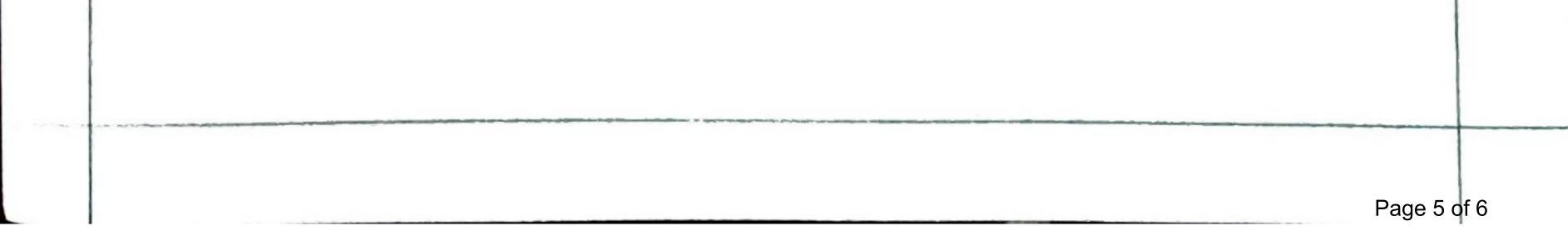
$$I \cdot F = e \int \frac{f^{2}dx}{2} = 1 + sinx$$
Soln : $\frac{1}{2} \cdot (1+sinx) = \int \frac{-x}{1+sinx} \times (1+sinx) dx = \int -xdx = -\frac{x^{2}}{2} + C$

$$\frac{convert Rt}{1+sinx} = -\frac{x^{2}}{2} + C$$

(4)

(5)
$$I = \int \frac{x^{2} + x + 1}{x^{2} - 1} dx = \int x dx + \int \frac{2x}{x^{2} - 1} dx + \int \frac{dx}{x^{2} - 1}$$

(5)
$$I = \int \frac{x^{2} + x + 1}{x^{2} - 1} dx = \int x dx + \int \frac{2x}{x^{2} - 1} dx + \int \frac{dx}{x^{2} - 1}$$


$$= \frac{x^{2}}{2} + \log |x^{2} - 1| + \frac{1}{2} \log |\frac{x - 1}{x + 1}| + C$$
(2) for one-one : let $x_{1}, x_{2} \in R - \frac{5}{3} - \frac{1}{3}$
let $f(x_{1}) = f(x_{2})$
 $\Rightarrow \frac{4x_{1} + 3}{3x_{1} + 4} = \frac{4x_{2} + 3}{3x_{2} + 4} \Rightarrow x_{1} = x_{2} \Rightarrow f$ is one-one.
For onthe let $y = f(x) \Rightarrow y = \frac{4x + 3}{3x_{1} + 4} \Rightarrow x = \frac{3 - 4x}{3y - 4}$
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: S is subflexive.
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: S is subflexive.
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: A is is divisible by 4 is: B is divisible by 4 is: C is is subflexive.
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: C is is subflexive.
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: C is is subflexive.
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: C is is subflexive.
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: C is is subflexive.
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: C is is subflexive.
(a,b) $\in S \Rightarrow |a - b|$ is divisible by 4 is: C is is subflexive.
(a,b) $\in S \Rightarrow and$ (b,c) $\in S \Rightarrow |a - b| = 4h$, $|b - c| = 4\mu$ is $|a - c| = 4h' \Rightarrow S$ is then:
is is equivalence.

AND THE REPORT OF THE ADDRESS AND A THE PARTY OF THE PART

- 10

(...

mand

12.

CRPF PUBLIC SCHOOL, ROHINI, DELHI-11008S
MARKING SCHEME: PRACTICE PAPER-02 (2024-25)

$$Section - A$$
(4)
$$|ad_{ij}A| = |A|^{2} \Rightarrow |uv = |A|^{2} \Rightarrow |A| = \pm 12$$

$$\therefore option (c)$$
(5)
$$|2 \sin x = \frac{3}{2} = 0 \Rightarrow |4 \sin^{2} x - 3 = 0 \Rightarrow \sin x = \pm \frac{5}{2} \Rightarrow x = \frac{\pi}{2} + \frac{2\pi}{3}$$

$$\therefore option (d)$$
(6)
$$|A A B C = 0 \Rightarrow \left|\frac{3}{8} - \frac{2}{8} + \frac{1}{1}\right| = 0 \Rightarrow k = 5$$

$$\therefore option (k)$$
(7)
$$|A = 4 \sin^{2} (B(cx + \tan x)) = 4 \sin^{2} (\frac{1 + \sin x}{c \sin x}) = 4 \tan^{2} (\frac{1 + \cos x}{c \sin (\frac{\pi}{2} - \frac{\pi}{2})})$$

$$= 4 \tan^{2} (Cc (\frac{\pi}{4} - \frac{2}{2}))$$

$$= 4 \tan^{2} (Cc (\frac{\pi}{4} - \frac{2}{4}))$$

$$= 4 \tan^{2} (Cc (\frac{\pi}{4$$

(1)
$$classly 2+3=5$$
 ... $classly (4)$
(1) $dlassly 2+3=5$... $classly (4)$
(1) $dlassly 2+3=5$... $classly (4)$
(1) $dlassly (4)$
(2) $dlassly (4)$
(3) $dlassly (4)$
(4) $dlassly (4)$
(4) $dlassly (4)$
(5) $dlassly (4)$
(6) $dlassly (4)$
(7) $dlassly (4)$
(8) $dlassly (4)$
(9) $dlassly (4)$
(9) $dlassly (4)$
(10) $dlassly (4)$
(11) $dlassly (4)$
(12) $dlassly (4)$
(13) $dlassly (4)$
(14) $dlassly (4)$
(15) $dlassly (4)$
(16) $dlassly (4)$
(17) $dlassly (4)$
(18) $dlassly (4)$
(19) $dlassly (4)$
(19) $dlassly (4)$
(10) $dlassly (4)$
(11) $dlassly (4)$
(12) $dlassly (4)$
(13) $dlassly (4)$
(14) $dlassly (4)$
(15) $dlassly (4)$
(16) $dlassly (4)$
(17) $dlassly (4)$
(18) $dlassly (4)$
(19) $dlassly (4)$
(19) $dlassly (4)$
(10) $dlassly (4)$
(11) $dlassly (4)$
(12) $dlassly (4)$
(13) $dlassly (4)$
(14) $dlassly (4)$
(15) $dlassly (4)$
(16) $dlassly (4)$
(17) $dlassly (4)$
(17) $dlassly (4)$
(18) $dlassly (4)$
(19) $dlassly (4)$
(19) $dlassly (4)$
(10) $dlassly (4)$
(11) $dlassly (4)$
(12) $dlassly (4)$
(13) $dlassly (4)$
(14) $dlassly (4)$
(15) $dlassly (4)$
(16) $dlassly (4)$
(17) $dlassly (4)$
(17

Page 2 of 8

.

$$\begin{aligned} & \left[26 \right] \quad I = \int_{0}^{\pi} \frac{x + \tan x}{s_{e(x)} + \tan n} \, dx & - \left(0 \right) \\ & = \int_{0}^{\pi} \frac{(\pi - x) + \tan (\pi - x)}{s_{e(x)} + \tan x} \, dx & - \left(0 \right) \\ & = \int_{0}^{\pi} \frac{(\pi - x) + \tan x}{s_{e(x)} + \tan x} \, dx & - \left(0 \right) \\ & adding \quad 0 + \left(0 \right) \\ & adding \quad 0 + \left(0 \right) \\ & 2I = \pi \int_{0}^{\pi} \frac{\pi - x + \tan x}{s_{e(x)} + \tan x} \, x \, \frac{x(x - \tan x)}{s_{e(x)} - \tan x} \, dx \\ & = \frac{\pi}{2} \int_{0}^{\pi} \frac{s_{e(x)} + \tan x}{1} \, x \, \frac{x(x - \tan x)}{1} \, dx \\ & = \frac{\pi}{2} \int_{0}^{\pi} \frac{s_{e(x)} + \tan x}{1} - \frac{\tan^{2} x}{x} \, dx \\ & = \frac{\pi}{2} \int_{0}^{\pi} (se(x + \tan x) - sec^{2}x + 1) \, dx \\ & = \frac{\pi}{2} \left[se(x - \tan x - sec^{2}x + 1) \, dx \\ & = \frac{\pi}{2} \left[se(x - \tan x + x) \right]_{0}^{\pi} = \frac{\pi}{2} (\pi - 2) \, Ang \\ & I = \int_{1}^{2} (x + y) \, dx + \int_{2}^{3} x \, dx + \int_{3}^{4} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{2}^{3} x \, dx + \int_{3}^{4} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{2}^{2} x \, dx + \int_{3}^{4} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{2}^{2} x \, dx + \int_{3}^{4} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{2}^{2} x \, dx + \int_{3}^{4} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{2}^{2} x \, dx + \int_{3}^{4} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{2}^{2} x \, dx + \int_{3}^{2} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{2}^{2} x \, dx + \int_{3}^{2} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{1}^{2} x \, dx + \int_{1}^{2} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + y) \, dx + \int_{1}^{2} x \, dx + \int_{1}^{2} (2x - 6) \, dx \\ & = \int_{1}^{2} (-x + 1) \, dx - 2 \, dx \\ & = \int_{1}^{2} (-x + 1) \, dx - 2 \, dx + 2 \,$$

36)
$$f(A) = \frac{1}{3} , f(B) = \frac{1}{2} ; f(\overline{A}) = \frac{1}{2} , f(\overline{A}) = \frac{1}{2} , f(\overline{A}) = \frac{1}{2} ,$$

$$f(A) = \frac{1}{3} , f(B) = \frac{1}{2} ; f(\overline{A}) = \frac{1}{4} , f(\overline{A}) = \frac{1}{2} ,$$

$$f(A) = \frac{1}{3} ; f(\overline{A}) = \frac{1}{4} ; f(\overline{A}) = \frac{1}{4} ; f(\overline{A}) + f(\overline{A}, \overline{B}, \overline{A}, \overline{B}, \overline{A}) + \dots =$$

$$= \frac{1}{4} + \left(\frac{1}{2}\right)^{2} : \frac{1}{2} + \left(\frac{1}{2}\right)^{2} : \frac{1}{2} + \dots =$$

$$= \frac{1}{4} ; f(\overline{A}) = \frac{1}{4} ; f(\overline{A}) = \frac{1}{4} ; f(\overline{A}) = \frac{1}{4} ;$$

$$f(B) = 1 - \frac{2}{3} = \frac{1}{3} ;$$

$$OR$$

$$Total perfect believe in non-vidence ; F: feetle believe in violence,
$$P(E) = \frac{2\alpha}{5\alpha} ; P(\overline{E}) = \frac{2\alpha}{5\alpha} ;$$

$$X: Ne \cdot cf non-vident person ; X = 0, 1, 2$$

$$P(X = 0) = \frac{3\alpha}{5\alpha} \times \frac{2\pi}{44} ;$$

$$P(X = 1) = 2 \times \frac{2\alpha}{5\alpha} \times \frac{2\pi}{44} ;$$

$$P(X) = \frac{196}{245} ;$$

$$f(X = 1) = 2 \times \frac{2\alpha}{5\alpha} \times \frac{2\pi}{44} ;$$

$$P(X) = \frac{196}{245} ;$$

$$f(X = 1) = 2 \times \frac{2\alpha}{5\alpha} \times \frac{2\pi}{44} ;$$

$$P(X) = \frac{196}{245} ;$$

$$f(X = 1) = \frac{1}{4} ; \frac{1}{3} ; \frac{1}{44} ; \frac{1}{44} ;$$

$$P(X) = \frac{196}{245} ;$$

$$(5)$$

$$\int \frac{1}{4} ; \frac$$$$

(

$$\begin{split} hb_{2} = 4\mathbf{I} \implies \mathbf{b}_{1}^{T} = \frac{1}{4} \cdot \mathbf{A} & \mathbf{OR} \\ Given system \quad \mathbf{BX} = \mathbf{C} \implies \mathbf{X} = \mathbf{G}^{T} \mathbf{C} = \frac{1}{4} \cdot \mathbf{A} \cdot \mathbf{C} \\ &= \frac{1}{4} \begin{pmatrix} 5 & 1 & 2 \\ 7 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 7 & 2 \end{pmatrix} \\ \frac{1}{2} \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} 8 \\ 4 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} 8 \\ 4 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} 8 \\ 4 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} + \frac{y^{2}}{y^{2}} = 1 \\ &= x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix}^{T} = \begin{pmatrix} \pi \\ -\frac{1}{2} \end{pmatrix} \mathbf{S}_{1} \cdot \mathbf{OND} \\ &= \begin{pmatrix} 1 \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix} \\ &= \begin{pmatrix} \pi \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - x + \frac{y^{2}}{2} \end{pmatrix} \\ &= \begin{pmatrix} \pi \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - \frac{1}{x} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - \frac{1}{x} + \frac{1}{x} \end{pmatrix} \\ &= \begin{pmatrix} \pi \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{5n^{2}x}{x} - \frac{1}{x} + \frac{1}{x} \end{pmatrix} \\ &= \begin{pmatrix} \pi \\ \sqrt{1-x^{2}} + \frac{1}{2} \cdot \frac{1}{x} + \frac{1}{x} + \frac{1}{x} \end{pmatrix} \\ &= \begin{pmatrix} \pi \\ \sqrt{1-x^{2}} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} \end{pmatrix} \\ &= \begin{pmatrix} \pi \\ \sqrt{1-x^{2}} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} \end{pmatrix} \\ &= \begin{pmatrix} \pi \\ \sqrt{1-x^{2}} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} \end{pmatrix} \\ &= \begin{pmatrix} \pi \\ \sqrt{1-x^{2}} + \frac{1}{x} + \frac{1}{$$

 \bigcirc

Page o ui o

CRPF PUBLIC SCHOOL, ROHINI, DELHI-110085

MARKING SCHEME: PRACTICE PAPER-03 (2024-25)

SECTION-A

	SECTION-A
A1	$n(A)=2$: No of preflexive prelations = $2^{n(n-1)} = 2^{2\times 1} = 4$: option (b)
A2	A, B, C are collinear = ar(BABC) = 0
A3	$\begin{vmatrix} \Rightarrow & 3 & -2 & 1 \\ k & 2 & 1 \\ 8 & 8 & 1 \end{vmatrix} = 0 \Rightarrow 3(2-8) + a(k-8) + 1(8k-16) = 0 \Rightarrow k=5$ $\therefore option (c)$ $\begin{vmatrix} x & 2 \\ 3 & x-2 \end{vmatrix} = 0 \Rightarrow x^2 - 2x - 6 = 0$ $\therefore Product of all possible values of x is c_1 ie -6 = -6$
A4	$ A = KA \rightarrow D = k^{n} D \rightarrow k^{2} $
	$ A = KA \Rightarrow A = K^{n} A \Rightarrow K^{2} = \Rightarrow K = \pm $ $\therefore Svm = - + = 0 \qquad \therefore option (d)$
A5.	$A.(adjA) = 3I \Rightarrow A .I = 3I \Rightarrow A = 3$
	also, $ adjA = A ^{n-1} = 3^2 = 9$
	: 1Al + ladjAl = 3+9=12 : option (a)
A6	As f is cts. at x=0
	$\Rightarrow \lim_{x \to 0} f(x) = f(0) \Rightarrow 2k = \lim_{x \to 0} \left(\frac{\sin x}{x} + \cos x\right) \Rightarrow 2k = 1 + 1 \Rightarrow k = 1$ $x \to 0 \qquad \qquad$
A7 .	$x = a \cos \theta \Rightarrow \frac{dx}{d\theta} = 2a \cos \theta (-\sin \theta)$
	$f = b \sin^2 \Theta \Rightarrow \frac{dy}{d\theta} = 2b \sin \Theta (\cos \theta)$
	$dy = \frac{2b\sin\theta\cos\theta}{2a\sin\theta\cos\theta} = -\frac{b}{a}$, $\frac{b}{a}$, $\frac{b}{$
	option (a)
A9,	$I = \int_{0}^{\sqrt{2}} \frac{\int dx}{\int dx} dx - D$
	$\Rightarrow I = \int_{0}^{T/2} \frac{\int \tan x}{\int \tan x} dx = 0$
	add, $2I = \int_{0}^{\sqrt{2}} I dx \Rightarrow 2I = [x]_{0}^{\sqrt{2}} \Rightarrow 2I = \underline{\Xi} \Rightarrow I = \underline{\Xi} : eption(c)$
A10.	order = 2, degree = 2 Product = $2 \times 2 = 4$ option (a)
A11	$dy = 1$, $y = 2 \log x$ and $(-\frac{1}{2} dy)$ ($-\frac{1}{2} dy$)
	$\frac{dy}{dx} + \frac{1}{x \log x} \cdot y = \frac{2\log x}{x^2 \log x} ; P = \frac{1}{x \log x} : IF = e^{\int x \log x} dx = e^{\int x \log x} = e^{\int x \log x}$
	$(': \log x = t = e \log(\log x))$ $\Rightarrow \downarrow o x = dt) = \log x$
	(c)

A12. Req. Projection =
$$\frac{\pi}{151} = \frac{310 + (-1)(2) + (-2)(-3)}{\sqrt{1 + 4 + 4}} = \frac{\pi}{2}$$
; eption (a)
A13. $\vec{a} + \vec{b} = -\vec{c}$ \Rightarrow $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{v}) = (-7) \cdot (-7) \Rightarrow |\vec{a}|^2 + |\vec{v}|^2 + 2\vec{a} \cdot \vec{v} = |\vec{c}|^2$
 $\Rightarrow |\vec{2}|^2 + |\vec{v}|^2 + 2|\vec{a}| \cdot |\vec{k}| \cos \theta = |\vec{c}|^2$
 $\Rightarrow (3)^2 + (5)^2 + 2(3)(5) \cos \theta = (7)^2$
 $\Rightarrow (30^2 + 3)^2 + 2(3)(5) \cos \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \cos \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
 $\Rightarrow (30^2 + 2)^2 + 2(3)(5) \sin \theta = (7)^2$
A14. $\vec{b} = (7)^2 + 2(3)^2 + 2(3)^2 + 1(3) = 0$
 $\Rightarrow (7)^2 + (7)^2 + 1(3) = 0$
 $\Rightarrow (7)^2 + (7)^2 + 1(3) = 0$
 $= (7)^2 + (7)^2 + 1(7)^2$

Put
$$x = \sin \theta$$
 $\Rightarrow \theta = \sin^{-1}x$
 $\therefore y = \sin^{-1}\left(\frac{\sin \theta + G_{2}\theta}{52}\right) = \sin^{-1}\left(\frac{1}{42}\sin \theta + \frac{1}{52}G_{2}\theta\right) = 3\pi^{-1}\left(\sin\left(\frac{\pi}{4} + \theta\right)\right)$
 $\Rightarrow y = \frac{\pi}{4} + \theta \Rightarrow \frac{\pi}{42} = \frac{\pi}{42} + \sin^{-1}x^{-1}$
A22. $f(x) = -2x^{2} - 9x^{2} - 12x + 1$
 $\Rightarrow f(x) = -6x^{2} - 18x - 12 = -6(x^{2} + 3x + 2) = -6(x+1)(x+2)$
for inc/dec, $f(x) = 0 \Rightarrow x = -1, -2 = \frac{-1}{2} + \frac{-1}{2} = \infty$
 $\therefore f$ is deco when $x \in (-\infty, -2) \cup (-1, \infty)$ f fine when $x \in (-2, -1)$
A23. $\vec{x} = \frac{4(2\hat{1} + 2\hat{j} + 4\hat{k}) - 1(-\hat{1} + \hat{j} + \hat{k})}{4 - 1} \Rightarrow \vec{x} = \frac{3\hat{1} + 2\hat{j} + 16\hat{k} + \hat{1} - \hat{j} - \hat{k}}{4 - 1}$
 $\therefore \vec{\pi} = \frac{9\hat{1} + 11\hat{j} + 16\hat{k}}{3} \text{ or } 3\hat{n} + \frac{11}{3}\hat{j} + 5\hat{k}$
Given: $|\vec{x}| = |\vec{k}| = 1$; also $|\vec{x} + \vec{k}| = 1$
 $\Rightarrow |\vec{x} + \hat{x}| = 1 \Rightarrow (\vec{x} + \hat{x}) \cdot (\vec{x} - \hat{x}) = 1$
 $\Rightarrow |\vec{x}| + 2\vec{x} \cdot \vec{k} = 1 \Rightarrow \vec{x} \cdot \vec{k} = 1$
 $\Rightarrow |\vec{x}| + 12\hat{k} + 13\hat{k} = -\frac{1}{2}$
Now, $|\vec{x} - \vec{k}|^{2} = (\vec{a} - \hat{k}) \cdot (\vec{a} - \hat{k})$
 $= |\vec{x}|^{2} + |\vec{k}|^{2} - 2\vec{x} \cdot \vec{k} = 1$
 $\Rightarrow |\vec{x}| - 4\hat{k} = 1 \Rightarrow (\vec{x} + \hat{k}) = 1\hat{k} = -\frac{1}{2}$
Now, $\vec{a}_{1} \times \vec{a}_{2} = \frac{1}{2} - \hat{k} \cdot \vec{k} = 1$
 $= 1 + 1 - 2(-\frac{1}{2}) = x \Rightarrow |\vec{a} - \vec{k}| = 4\hat{k} + \hat{k}(-8 - 9)$
 $\therefore |\vec{a}_{1} \times \vec{a}_{2}| = 1(-2\hat{x})^{2} + (-1\hat{x})^{2} + (-1\hat{x})^{2} = -9\hat{k} + \frac{1}{2} - 2\hat{k} \cdot \hat{k} = 1\hat{k} = -9\hat{k} + \frac{1}{2} - 1\hat{k} = -9\hat{k} + \frac{1}{2} - 2\hat{k} \cdot \hat{k} = 1\hat{k} = -9\hat{k} + \frac{1}{2} - 2\hat{k} \cdot \hat{k} = 1\hat{k} + \frac{1}{2} - 2\hat{k} \cdot \hat{k} = 1\hat{k} + \frac{1}{2} - 1\hat{k} + \frac{1}{2} - 1\hat{k} + \frac{1}{2} - 1\hat{k} = -1\hat{k} + \frac{1}{2} - 1\hat{k} + \frac{1}{2} - 1\hat{k} = -1\hat{k} + \frac{1}{2} - 1\hat{k} + \frac{1}{2} - 1\hat{k} = -1\hat{k} + \frac{1}{2} - 1\hat{k} = -1\hat{k} + \frac{1}{2} - 1\hat{k} +$

SECTION-C

A26.

$$\begin{aligned}
\begin{aligned}
\sqrt{1-x^{2}} + \sqrt{1-y^{2}} &= \alpha(x-y) \\
\text{Let } x = \sin A , y = \sin B \Rightarrow A = \sin^{2}x \quad \text{and } B = \sin^{2}y, \\
\therefore \sqrt{1-\sin^{2}A} + \sqrt{1-\sin^{2}B} &= \alpha(\sin A - \sin B) \\
\Rightarrow & \cos A + \cos g = \alpha(\sin A - \sin B) \\
\Rightarrow & \alpha(\cos(\frac{A+2}{2}) - \cos(\frac{A+2}{2}) = \alpha(\frac{1}{2}\sqrt{\cos(\frac{A+2}{2})}, \sin(\frac{A+2}{2})) \\
\Rightarrow & \cot(\frac{A+2}{2}) = \alpha \Rightarrow A - B = 2 \cot^{2}\alpha \\
\Rightarrow & \sin^{2}x - \sin^{2}y = 2 \cot^{2}\alpha \\
\Rightarrow & \frac{1}{\sqrt{1-x^{2}}} - \frac{1}{\sqrt{1-y^{2}}}, \frac{1}{\sqrt{4x}} = 0 \Rightarrow \frac{dy}{dx} = \int \frac{1-y^{2}}{1-x^{2}}, \quad H; P \\
& \frac{1}{9} = e^{\sin x} + (box)^{x} & OR \\
\Rightarrow & \frac{1}{\sqrt{1-x^{2}}} - \frac{1}{\sqrt{1-y^{2}}}, \frac{1}{\sqrt{4x}} = 0 \Rightarrow \frac{dy}{dx} = \int \frac{1-y^{2}}{1-x^{2}}, \quad H; P \\
& \frac{1}{9} = e^{\sin x} + (box)^{x} & OR \\
\Rightarrow & \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad \frac{1}{\sqrt{1-x^{2}}}, \quad y = (box)^{x} \\
\Rightarrow & \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad y = (box)^{x} \\
\Rightarrow & \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad y = (box)^{x} \\
\Rightarrow & \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad y = (box)^{x} \\
& How, \quad U = e^{\sin x} \Rightarrow \frac{1}{\sqrt{4x}} = \cos x \cdot e^{5ix} + by(tox) \cdot 1 \\
\Rightarrow & \frac{1}{\sqrt{4x}} = x \cdot \frac{1}{\sqrt{1-x^{2}}}, \quad x = bx^{2} \\
& How, \quad V = (box)^{x} \Rightarrow \frac{1}{\sqrt{4x}} = x \cdot \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox) \cdot 1 \\
\Rightarrow & \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{4x}} = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{1-x^{2}}}, \quad x = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{1-x^{2}}}, \quad x = \frac{1}{\sqrt{1-x^{2}}}, \quad x = \frac{1}{\sqrt{1-x^{2}}}, \quad x = by(tox)^{x} \\
& \frac{1}{\sqrt{1-x^{2}}}, \quad x = \frac{1}{\sqrt{1-x^{2}}}, \quad x =$$

Required area =
$$\int_{0}^{1} (j \circ j \circ (ir \circ (k)) \circ (k - \int_{0}^{1} (j \circ j \circ k) \cdot (k - \frac{1}{2}) dx =$$
$$= \int_{0}^{1} \sqrt{1 - x^{2}} dx - \int_{0}^{1} (1 - x) dx =$$
$$= \left(\frac{x}{2} \sqrt{1 - x^{2}} + \frac{1}{2} \sin^{2} x\right)_{0}^{1} - \left(\frac{x - \frac{x}{2}}{2}\right)_{0}^{1} =$$
$$= \left(\frac{\pi}{2} - \frac{1}{2}\right)_{0}^{1} \circ g_{1}^{1} \sin^{2} x\right)_{0}^{1} - \left(\frac{x - \frac{x}{2}}{2}\right)_{0}^{1} =$$
$$= \left(\frac{\pi}{2} - \frac{1}{2}\right)_{0}^{1} \circ g_{1}^{1} \sin^{2} x\right)_{0}^{1} - \left(\frac{x - \frac{x}{2}}{2}\right)_{0}^{1} =$$
$$= \left(\frac{\pi}{2} - \frac{1}{2}\right)_{0}^{1} \circ g_{1}^{1} \sin^{2} x\right)_{0}^{1} - \left(\frac{x - \frac{x}{2}}{2}\right)_{0}^{1} =$$
$$= \left(\frac{\pi}{2} - \frac{1}{2}\right)_{0}^{1} \circ g_{1}^{1} \sin^{2} x\right)_{0}^{1} - \left(\frac{x - \frac{x}{2}}{2}\right)_{0}^{1} =$$
$$= \left(\frac{\pi}{2} - \frac{1}{2}\right)_{0}^{1} \circ g_{1}^{1} \sin^{2} x\right)_{0}^{1} - \left(\frac{x - \frac{x}{2}}{2}\right)_{0}^{1} =$$
$$= \left(\frac{\pi}{2} - \frac{1}{2}\right)_{0}^{1} \circ g_{1}^{1} \sin^{2} x + \frac{1}{2} \sin^{2} x$$

 ${}^{\textcircled{\sc only}}$

. 0	$P(success) = P(s) = \frac{1}{2}$, $P(failure) = P(F) = \frac{1}{2}$		
	$P(A) = P(S) + P(FFS) + P(FFFFS) + \dots \infty$		
	$= \frac{1}{2} + (\frac{1}{2})^{2} + (\frac{1}{2})^{4} + (\frac{1}{2})^{4} + \cdots $	$a = \frac{1}{2}, n = \frac{1}{4}$	
	$=\frac{1}{1-\frac{1}{4}}=\frac{2}{3}$	$S_{\infty} = \frac{\alpha}{1-92}$	
		1-92	
	·, P(B)= 1-===================================		
1.	Min, Z = 5x + 10y		
	x+2y=120 $x+y=60$ $x=2y$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	\uparrow		
	120-		
	100-		
	90-		
1	H Sof		
	I V GO		
	50-		
	40 D (60,30)		
	30 20 20		
	10 20 30 40 50 60 70 80 90 100 110 B20		
	10 20 30 40 50 60 70 80 90 160 110 B120		
	10 20 30 40 50 80 70 80 90 160 110 B120		
	Comor Pt. Z= 5x+10y		
	Comon Pt. Z= 5x+10y		
	$ \begin{array}{c} \hline (omor ft. Z = 5x + 10y \\ \hline A(60,0) \\ \hline 300 \\ \hline min. \end{array} $	·	
	$ \begin{array}{c c} \hline \hline$		

A32.
$$A = \begin{bmatrix} 2 & 2 & 4 \\ 3 & -2 & 2 \\ 4 & 2 & -3 \end{bmatrix} \Rightarrow |A| = 2(L-4) - 3(-7-8) + 4(L+8) = |I|| = 0 \Rightarrow A^{1} exist.$$
Phow, $A_{11} = 2$, $A_{12} = 17$, $A_{13} = 14$
 $A_{21} = 17$, $A_{22} = -22$, $A_{23} = 8$
 $A_{23} = 14$, $A_{22} = -22$, $A_{23} = 8$
 $A_{23} = 14$, $A_{22} = -22$, $A_{23} = 8$
 $A_{23} = 14$, $A_{22} = -22$, $A_{23} = 8$
 $A_{23} = 14$, $A_{22} = -22$, $A_{23} = 8$
 $A_{23} = 14$, $A_{22} = -22$, $A_{23} = 8$
 $A_{23} = 14$, $A_{22} = -22$, $A_{23} = 8$
 $A_{23} = 14$, $A_{23} = 8$, $A_{23} = -12$
 $A_{23} = \frac{1}{14} \begin{bmatrix} 2 & 17 & 18 \\ 14 & 8 & -13 \end{bmatrix} \begin{bmatrix} 17 \\ 12 \\ 14 \end{bmatrix} \begin{bmatrix} 17 \\ -22 \\ 8 \end{bmatrix}$
Now, $AX = B \Rightarrow X = A^{-1}. B$
 $= \frac{1}{111} \begin{bmatrix} 2 & 17 & 18 \\ 11 & -22 & 8 \\ 11 & 8 & -13 \end{bmatrix} \begin{bmatrix} 17 \\ 12 \\ 8 \end{bmatrix}$
Now, $AX = B \Rightarrow X = A^{-1}. B$
 $= \frac{1}{111} \begin{bmatrix} 2 & 17 & 18 \\ 11 & -22 & 8 \\ 11 & 8 & -13 \end{bmatrix} \begin{bmatrix} 17 \\ 12 \\ 8 \end{bmatrix}$
Now, $AX = B \Rightarrow X = A^{-1}. B$
 $= \frac{1}{111} \begin{bmatrix} 2 & 17 & 18 \\ 11 & -22 & 18 \\ 11 & 8 & -13 \end{bmatrix} \begin{bmatrix} 17 \\ 12 \\ 22 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$. $X = 3, Y = 1, 7 = 2$
A33. (a, b) R (c, d) \Leftrightarrow at $d = b t c$
for symmetric : $(a, b) R (a, b) \Rightarrow$ at $b = b + a$, always true
 $(a, b) R (c, d) \Leftrightarrow$ at $d = b t c$
 $\Rightarrow d t a = c t b$
 $\Rightarrow c t b = d t a \Rightarrow (c, d) R (a, b)$
 $\Rightarrow R L a Symm.$
for transitive : Let $(a, b), (c, d), (c, f) \in A \times A$
 $\frac{1}{8} (c, b) R (c, d) \Rightarrow a + d = b t c$
 $a a d (c, d) R (c, d) \Rightarrow a + d = b t c$
 $A = 1 = b t c a (a, b) R (a, b) R (a, b) R (a, b) R (a, b)$
 $\Rightarrow R L a Symm.$
for transitive : Let $(a, b), (c, d), (c, f) \in A \times A$
 $\frac{1}{8} (a, b) R (c, d) \Rightarrow a + d = b t c + d + e$
 $a a d t = b t c + d + e \Rightarrow (a, b) R (c, f) \Rightarrow R is transitive = A = 1$
 $A = 1 = b t c a A = b = a = 3$
 $\therefore [(2,5) R (a, b) \Rightarrow R + b = 5 + a \Rightarrow b - a = 3$
 $\therefore [(2,5) R (a, b) \Rightarrow R + b = 5 + a \Rightarrow b - a = 3$
 $\therefore [(2,5) R (a, b) \Rightarrow R + b = 5 + a \Rightarrow b - a = 3$
 $\therefore [(2,5) R (a, b) \Rightarrow R + b = 5 + a \Rightarrow b - a = 3$
 $\therefore [(2,5) R (a, b) \Rightarrow R + b = 5 + a \Rightarrow b - a = 3$
 $\therefore [(2,5) R (a, b) \Rightarrow R + b = 5 + a \Rightarrow b - a = 3$
 $\therefore [(2,5) R (a, b) \Rightarrow R + b = 5 + a \Rightarrow b - a = 3$

$$\begin{aligned} f: R - i31 \to R - i13 \\ f(x) = \frac{x-2}{x-3}, \\ \text{Fr} \quad one_{-one}, \quad \text{let} \quad x_{1,3}x_{2} \in R - i35, \\ & \text{let} \quad f(x_{1}) = f(x_{1}) \\ \Rightarrow \quad \frac{x_{1,-3}}{x_{1,-3}} = \frac{x_{1,-2}}{x_{2,-3}} \Rightarrow (x_{1,-2})(x_{1,-3}) = (x_{1,-3})(x_{1,-2}) \\ \Rightarrow \quad \frac{x_{1,-3}}{x_{1,-3}} = \frac{x_{1,-2}}{x_{2,-3}} \Rightarrow (x_{1,-2})(x_{1,-3}) = (x_{1,-3})(x_{1,-2}) \\ \Rightarrow \quad x_{1,-3} = \frac{x_{1,-3}}{x_{2,-3}} \Rightarrow (x_{1,-3})(x_{1,-3}) \Rightarrow (x_{1,-3})(x_{1,-3}) = (x_{1,-3})(x_{1,-2}) \\ \Rightarrow \quad x_{1,-3} = \frac{x_{1,-3}}{x_{2,-3}} \Rightarrow (x_{1,-3})(x_{1,-3}) \Rightarrow x_{1,-3} = x_{2,-3} \\ \Rightarrow \quad x_{1,-3} = \frac{x_{1,-3}}{x_{1,-3}} \Rightarrow (x_{1,-3})(x_{1,-3}) \Rightarrow x_{1,-3} = x_{2,-3} \\ \Rightarrow \quad x_{1,-3} = \frac{x_{1,-3}}{x_{1,-3}} \Rightarrow (x_{1,-3})(x_{1,-3})(x_{1,-3}) \Rightarrow x_{1,-3} = x_{2,-3} \\ \text{clearly}, \quad y_{-1} + 0 \Rightarrow \quad y_{\pm 1} \quad \text{ie.} \quad y_{\pm} \in R - i15 \quad \text{ie.} \quad R_{\pm} = c - demain \\ \Rightarrow \quad y_{\pm} \quad x_{2,-3} = \frac{x_{2,-3}}{x_{1,-3}} & \text{Nop}, \\ & x_{1,-3} = \frac{x_{2,-1}}{x_{2,-3}} & x_{2,-3} = \frac{x_{2,-3}}{x_{1,-3}} \\ \text{Ast} \quad B(C, \frac{y_{1,-1}}{x_{2,-3}) + d(x_{1,-2}, \frac{x_{1,-3}}{x_{1,-3}}) = (x_{1,-3}, -2x) \\ \text{as,} \quad AB \perp BC \in \frac{y_{1,-1}}{x_{2,-1}} + 2i(3x_{1,-1}) - 2i(-3x_{1,-1}) - 2i(-3x_{1,-3}) = 0 \\ \Rightarrow \quad x_{1,-3} = \frac{x_{2,-3}}{x_{2,-3}} \\ \text{if} \quad \text{image of } A \quad \text{if} \land i(x_{1,-2})^{2} + (\frac{y_{1,-3}}{x_{2,-1}})^{2} = (\frac{y_{1,-3}}{x_{2,-3}}) \\ \text{if} \quad \text{image of } A \quad \text{if} \land i(x_{1,-2})^{2} + (\frac{y_{1,-3}}{x_{2,-3}})^{2} = (\frac{y_{1,-3}}{x_{2,-3}}) \\ \text{if} \quad \text{image of } A \quad \text{if} \land i(x_{1,-3})^{2} + (\frac{y_{1,-3}}{x_{2,-3}}) \\ \text{if} \quad \text{image if} \quad x_{2,-1} = (\frac{x_{1,-3}}{x_{2,-3})^{2} + (\frac{x_{1,-3}}{x_{2,-3}})^{2} = (\frac{y_{1,-3}}{x_{2,-3}}) \\ \text{if} \quad \text{image if} \quad x_{1,-2} = (\frac{x_{1,-3}}{x_{2,-3})^{2} + (\frac{x_{1,-3}}{x_{2,-3})^{2} + (\frac{x_{1,-3}}{x_{2,-3}})^{2} = (\frac{y_{1,-3}}{x_{2,-3}}) \\ \text{if} \quad \text{image if} \quad x_{1,-2} = (\frac{x_{1,-3}}{x_{2,-3})^{2} + (\frac{x_{1,-3}}{x_{2,-3})^{2} + (\frac{x_{1,-3}}{x_{2,-3})^{2} = (\frac{x_{1,-3}}{x_{2,-3})^{2} + (\frac{x_{1,-3}}{x_{2,-3})^{2} + (\frac{x_{1,-3}}$$

Hence,
$$\vec{a}_{1}^{2} = i+2\hat{g}-u\hat{k}$$
, $\vec{a}_{L}^{2} = 3\hat{i}+3\hat{j}-5\hat{k}$, $\vec{b}^{2} = 2\hat{i}+3\hat{j}+6\hat{k}$
S: $D: = \underbrace{\left|(\vec{a}_{2}^{2}-\vec{a}_{1})\times\vec{k}\right|}{|\vec{k}|}$
how, $\vec{a}_{L}^{2}-\vec{a}_{1} = 2\hat{i}+\hat{j}-\hat{k}$
 $(\vec{a}_{L}-\vec{a}_{1})\times\vec{k}^{2} = \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&i&-1\\2&3&6\end{vmatrix} = 9\hat{i}-1\hat{u}\hat{j}+4\hat{k}$
 $\therefore [(\vec{a}_{L}^{2}-\vec{a}_{1},\chi,\vec{k}]] = Jn+196+16 = J243$
also, $i\vec{k}^{2} = Jn+196+16 = 1243$
also, $i\vec{k}^{2} = Jn+196+16 = 7$
 $\therefore Rep. diverse = \underbrace{Jn}_{1}^{2} uxh$
 $r = \int_{-5}^{2} (1x) + 1x+2\hat{i} + 1x+5\hat{i}) dx$
 $exithcal peixts one $x = v_{1}-2\sqrt{5}$
 $\therefore I = \int_{-5}^{2} (1x) + 2x+2\hat{i} + 1x+5\hat{i}) dx + \int_{-2}^{2} (2x+2)\hat{i} + (x+5\hat{i}) dx$
 $= \int_{-5}^{2} (-x+3)dx + \int_{2}^{0} (2x+7)dx$
 $= \left[-\frac{x^{2}}{2} + 3x\right]_{-5}^{-2} + \left[\frac{x^{2}}{2} + 7\hat{i}\right]_{-2}^{-2} = (-8+\frac{55}{2}) + (12) = \frac{63}{22}$
A36.
 $\overrightarrow{D} = TS\pi = 2\pi x_{1}h + \pi x^{2} \Rightarrow h = 7S\pi - \pi x^{2}$
 $h^{1}(i) V = \pi x^{2}h \Rightarrow V = \pi x^{2}\left(\frac{15\pi - \pi x^{2}}{2\pi x}\right)$
 $\Rightarrow V = \frac{x}{2}(75\pi - \pi x^{2}) \text{ or } 75\pi = \frac{\pi}{2}\pi^{3}$
 $(ii) \frac{dW}{dx} = \frac{1}{2} \frac{76\pi - 3}{2}\pi x^{2}$
 $(iii) fric cirrlick purit , $\frac{dV}{dx} = 0 \Rightarrow 7S\pi = \frac{3}{2}\pi x^{3} \Rightarrow 3\hat{s} = 5 \text{ cms}$
 $Now, \frac{x^{3}V}{a^{3}x} = -2\pi x_{1} \Rightarrow \frac{x^{3}V}{a^{3}x}$
 $= 15\pi < 0 \therefore W$ is since, where the first of $x = \frac{3}{2}\pi x^{3}$
 $Also, h = 7\frac{5\pi - \pi x^{3}}{2\pi x} = \frac{75\pi - 28\pi}{2\pi x} = 5 \therefore h = 3$
 $(h) > 2x = \frac{1}{2}\pi dx$$$

A37. Given:
$$\frac{d\pi}{dt} = 1 \text{ em} | s$$

(i) $V = \frac{u}{3}\pi n^3 \Rightarrow \frac{dV}{dt} = \frac{u}{3}\pi \cdot 3n^2 \cdot \frac{d\pi}{dt}$
 $\Rightarrow \frac{dV}{dt} = 4\pi (s)^2 \times 1 = 144\pi \text{ cm}^2 | s$
(ii) $\frac{dV}{dt} = 4\pi (s)^2 \times 1 = 144\pi \text{ cm}^2 | s$
(ii) $\frac{dV}{dt} = 4\pi \text{ cm}^2 (3)^{16} \text{ cm}^2$
 $\Rightarrow 4\pi x^2 \cdot \frac{dn}{dt} = 4\pi \text{ cm}^2 s$ (3)¹⁶
 $\Rightarrow 4\pi x^2 \cdot \frac{dn}{dt} = 4\pi \text{ cm}^2 s$ (3)¹⁶
 $\Rightarrow 4\pi x^2 \cdot \frac{dn}{dt} = 4\pi \text{ cm}^2 \frac{d\pi}{dt} = \frac{1}{92} \frac{1}{2} \cdot \frac{1}{2} \frac{1}{2} \frac{1}{2} \Rightarrow 3\pi^2 = 10 \text{ cm}^2$
Now, $A = 4\pi x^2 - \frac{3}{2} \frac{d\pi}{dt} \Rightarrow 3\pi n^2 \cdot \frac{d\pi}{dt} \Rightarrow 3\pi n$

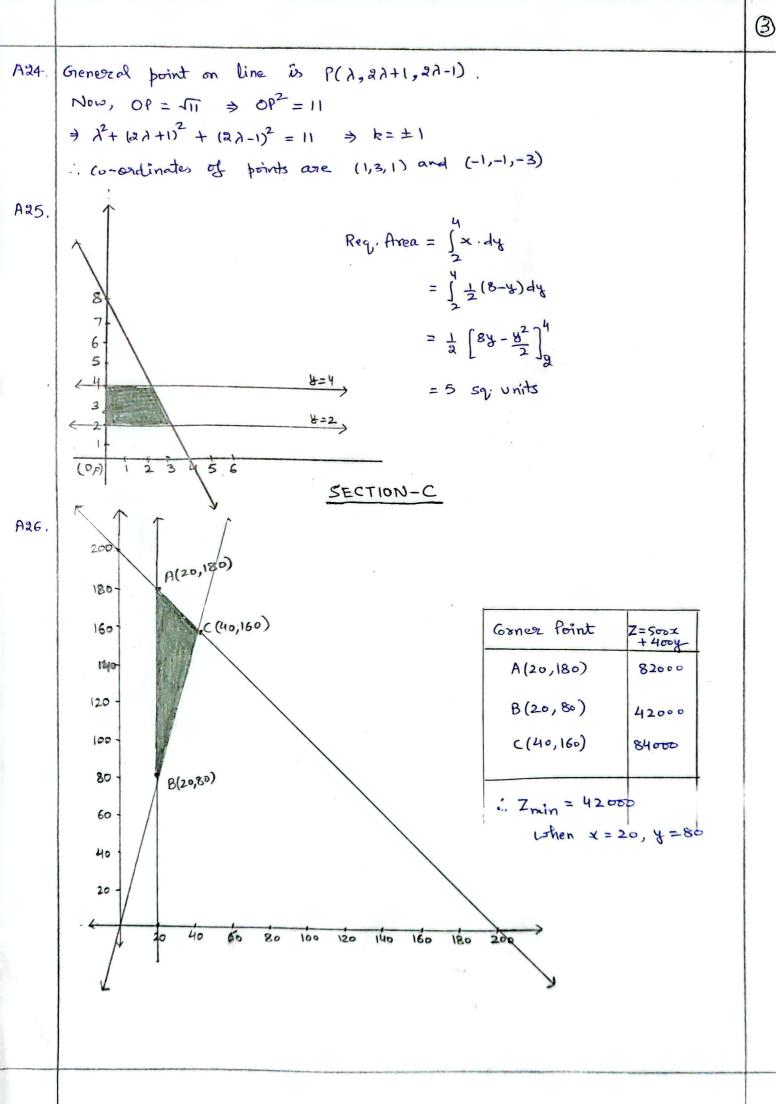
	CRPF PUBLIC SCHOOL, ROHINI, DELHI-110085
	MARKING SCHEME: PRACTICE PAPER-04 (2024-25)
	SECTION-A
AL	$2A+B=0 \Rightarrow B=-2A \Rightarrow B=-2\begin{bmatrix}3 & 4\\5 & 2\end{bmatrix} = \begin{bmatrix}-6 & -8\\-10 & -4\end{bmatrix}$: option (b)
A2.	$ adjA = 64 \Rightarrow A ^{3-1} = 64 \Rightarrow A = \pm 8$.: option (d)
A3.	here, $x = -3$, $y = -1$, $z = 4$. $x + y + z = 0$. option (d)
A4.	$f(x) = 2x^3 + 9x^2 + 12x - 1 \Rightarrow f'(x) = 6x^2 + 18x + 12 = 6(x+1)(x+2)$
	$f'(x) = 0 \Rightarrow x = -1, -2 \qquad \frac{+}{-\infty} = \frac{+}{-2} = \frac{+}{-1} = \frac{+}{-\infty} = \frac{+}{-1} x \in (-2, -1)$ is option (b)
A5.	n(A) = 5, $n(B) = 6$ Since $n(A) < n(B)$.; oftim (d)
AG.	order = 3, degree = 2: \therefore sum = 3+2 = 5 \therefore option (a)
A7	cleasty bounded region will be formed i option (d)
AB,	$A \qquad AB + BC = AC \Rightarrow BC = 2(-2) + 2h \qquad \therefore BD = (-) + b$
no,	Also, $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD} \rightarrow \overrightarrow{AB} = 2\widehat{i} + 3\widehat{k}$ oftion (d)
	B D C
A9.	$I = \int_{0}^{T/6} \sec^{2}\left(\frac{x}{6} - \frac{T}{6}\right) dx = \left[\tan\left(x - \frac{T}{6}\right)\right]_{0}^{T/6} = \tan 0 - \tan\left(\frac{-T}{6}\right) = \tan T = \frac{1}{5}$
A10.	$A^2 - 3A + I = 0$ (given) $\Rightarrow I = -A^2 + 3A \longrightarrow O$
	Now, $A''= xA + yI \Rightarrow AA'= xA' + yIA \Rightarrow I = xA' + yA - 2$
	from () + (2), x=-1, y=3 x+y=2 option (b)
A11 .	$(i \times j) \cdot j + (j \times i) \cdot k = k \cdot j - k \cdot k = -1$ option (d)
A12.	oftion (C)
A13.	$ 4\bar{A}' = 4^2 \times \bar{A}' = 6 \times \frac{1}{1\bar{A}_1} = 16 \times \frac{1}{2} = 8$.: option (c)
A14	$P(B A) = \frac{P(B\cap A)}{P(A)} = \frac{\frac{1}{8}}{1-\frac{3}{2}} = \frac{1}{2}$ option (a)
A15.	$(\omega^2 \frac{\pi}{4} + \omega^2 \frac{\pi}{4} + \omega^2 \Theta = 1 \Rightarrow \omega^2 \Theta = 0 \Rightarrow \Theta = \frac{\pi}{2} \therefore \text{option (c)}$
A16.	$x dy - (1 + x^2) dx = dx \Rightarrow x dy = (a + x^2) dx \Rightarrow dy = (\frac{a}{x} + x) dx$
A17.	div. by Gasz, $y = \frac{1 - \tan x}{1 + \tan x} = \tan \left(\frac{\pi}{4} - x\right)$ = $y = 2 \log x + \frac{x^2}{2} + C$.: oftim(4)
	div. by G_{3x} , $y = \frac{1 - \tan x}{1 + \tan x} = \tan \left(\frac{\pi}{4} - x\right)$ $\therefore \frac{dy}{dx} = -\sec^2\left(\frac{\pi}{4} - x\right)$ \therefore option (a)
	line is $\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z-y_2}{-2}$; dir. = < 2, -3, 6 >
	d.c. =< =, -3, -3, -3, -3, -3, -1, aption (d)

Al9.
$$y = \sin^{4}x + 2\sin^{4}x = \sin^{4}x + \cos^{4}x + \cos^{4}x + \cos^{4}x = \frac{\pi}{2} + \cos^{4}x$$

New, $\cos^{4}x \in [0, \pi]$: $\frac{\pi}{2} + \cos^{4}x \in [\frac{\pi}{2}, 3\frac{\pi}{2}]$: A is false.
but, R is toue. : sphere (A)
Al9. dr. of line II = < 2, 4, 40 = <1, 2, 37
dr. of line II = < 2, 4, 40 = <1, 2, 37
dr. of line II = < 2, 4, 40 = <1, 2, 37
dr. of line II = < 2, 4, 40 = <1, 2, 37
dr. of false. : offen (C)
but R is false. : offen (C)
A21. $\sin^{4}(\sin(3\frac{\pi}{4})) + \cos^{4}(\alpha_{4}\pi) + \tan^{1}1$
= $\operatorname{Sm}^{-1}(\sin(\pi-\frac{\pi}{4})) + \pi + \frac{\pi}{4} = \frac{\pi}{4} + \pi + \frac{\pi}{4} = \frac{3\pi}{2}$
OR

$$\frac{\sqrt{\pi}}{\pi} \qquad \operatorname{Range} = [\frac{\pi}{2}, \pi]$$
A22. $p = (\frac{12 + \frac{1}{2} + 5\pi) \cdot (\frac{1 + \pi}{4} + 7\pi)}{\sqrt{1^{2} + 1 + \pi}} = \frac{\pi}{3} \Rightarrow 3^{2} - \pi p + 4 = 0 \Rightarrow p = 2 \text{ or } \frac{1}{4}$
A23. $\operatorname{Diffectibating} 3y = \alpha_{2}^{2} + 1$ gives $3 \frac{4x}{4x} = 2\alpha_{1}^{2}$
when $x = 1$, $\frac{4x}{4x} = 2$.: $3(2) = 3\alpha(1)^{2} \Rightarrow \alpha = 2$.

$$f(10) = \frac{16 (5\pi x)}{4 + 6\pi x} - x$$


$$\Rightarrow f(\alpha) = \frac{16 (5\pi x)}{(4 + 6\pi x)^{2}} - 1$$

$$= \frac{Gax(56 - Gax)}{(4 + 6\pi x)^{2}}$$

$$Infern x \in (\frac{\pi}{2}, \pi), \quad Ga = 0; \quad 56 - Gax > 0 \text{ and } (4 + Gax)^{2} > 0$$

$$\therefore f(x) < 0 \Rightarrow f is X \cdot dec. in (\frac{\pi}{2}, \pi)$$

Ð

A27.	X: No, of gred balls out of the two balls drawn.
	Probability Distribution table is
	X 0 1 2
	$P(x)$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$
	Mean = $0x\frac{1}{4} + 1x\frac{1}{2} + 2x\frac{1}{4} = 1$ Ans.
	OR
	Let $P(A) = x$, $P(B) = y$ $P(A) \cdot P(\overline{B}) = \frac{1}{4} \implies x(1-y) = \frac{1}{4} \longrightarrow D$
	$P(\bar{A}), P(B) = \frac{1}{6} \implies (1-x), y = \frac{1}{6} \longrightarrow (D)$
	solving, x-y= 1
	eleminating y, we get 12x2-13x+3=0 =) x=1,3
	$\therefore P(A) = \frac{1}{3}, P(B) = \frac{1}{4} or P(A) = \frac{3}{4}, P(B) = \frac{2}{3}$
A28.	$I = \int \frac{x^{4}}{(x-1)(x^{2}+1)} dx$
	$= \int \left[x + 1 + \frac{1}{(x-1)(x^{2}+1)} \right] dx$
	$= \int \left(x + 1 + \frac{1}{2(x-1)} - \frac{1}{2} \cdot \frac{x+1}{x^2+1} \right) dx$
	$= \frac{x^2}{2} + x + \frac{1}{2} \log x-1 - \frac{1}{4} \log (x^2+1) - \frac{1}{2} \tan x + C$
	OR
	$I = \int \frac{c_{ab}}{\sqrt{3-3\sin\theta - c_{ab}^2}} d\theta$
	Put $\sin \theta = t$, $\cos \theta d\theta = dt$
	$I = \int \frac{\cos \theta}{\sqrt{\sin^2 \theta} - 3\sin \theta + 2} d\theta$
	$= \int \frac{dt}{\sqrt{t^2 - 3t + 2}} = \int \frac{dt}{\sqrt{(t - \frac{3}{2})^2 - (\frac{1}{2})^2}}$
	$= \log \left(\left(t - \frac{3}{2} \right) + J t^{2} - 3t + 2 \right) + C$
	$= \log \left(\sin \theta - \frac{3}{2} \right) + \sqrt{\sin^2 \theta - 3\sin \theta + 2} + C$
A29.	Given diff. Eqn is: dy 2x 4 = 5x2+4
	Given diff. Eqn is: $\frac{dy}{dx} + \frac{2x}{1+x^2}, y = \frac{5x^2+y}{1+x^2}$ I.F. = $e^{\int \frac{2x}{1+x^2} dx} = e^{\log(1+x^2)} = 1+x^2$ Soln is given by: $y.(1+x^2) = \int \frac{5x^2+y}{1+x^2} (1+x^2) dx = \int 5x^2+y dx$ $\therefore y.(1+x^2) = \frac{x}{2} \int x^2+y dx + 5x^2+y dx$
	soln is given by: y.(1+x2) = (J== (1+x2).dx =) J=== d>
	$y_{1}(1+x^{2}) = \frac{\chi(\sqrt{x^{2}+4})}{2} + 2\log x + \sqrt{x^{2}+4} + C$

$$d_{x}^{4} = \frac{x^{4}}{x^{4} + y^{4}} \longrightarrow 0$$

$$k^{4} = \frac{x^{4}}{x^{4} + y^{4}} \longrightarrow 0$$

$$k^{4} = \frac{x^{4}}{x^{4} + y^{4}} \longrightarrow 0$$

$$k^{4} = \frac{x^{4}}{x^{4} + y^{4}} \longrightarrow 0$$

$$\frac{1}{y^{4}} = \frac{1}{y^{4}} + \frac{1}{y^{4}} + \frac{1}{y^{4}} + \frac{1}{y^{4}} + \frac{1}{y^{4}} + \frac{1}{y^{4}$$

$$\begin{array}{l} \text{A3A.} \quad A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 1 & 3 \\ 1 & 1 & 3 \end{bmatrix} \Rightarrow |A| = 3(-2) - 4(1) + 1(5) = -5 \neq 0 \Rightarrow A^{-1} e xints\\ \text{hore, } A_{11} = -2, A_{12} = -1, A_{13} = 3\\ A_{31} = -1, A_{32} = 2, A_{32} = -1\\ A_{31} = 5, A_{32} = -5, A_{33} = -5\\ adj A = \begin{bmatrix} -2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5 \end{bmatrix} \Rightarrow A^{-1} = -\frac{1}{5} \begin{bmatrix} -2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5 \end{bmatrix} \\ \text{Given System } e_{b}^{T} e equations can be written as $AX = B$; $B = \begin{bmatrix} 2000 \\ 2600 \\ 2600 \\ 300 \end{bmatrix}$
Now, $X = A^{-1}B$
 $= \frac{-1}{5} \begin{bmatrix} -2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5 \end{bmatrix} \begin{bmatrix} a000 \\ 2600 \\ 2600 \\ 300 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -2000 \\ -1000 \\ 200 \\ 200 \end{bmatrix} = \begin{bmatrix} 4400 \\ 200 \\ 200 \\ 200 \\ 200 \end{bmatrix} = \frac{1400}{200}$
New, $X = A^{-1}B$
 $= \frac{-1}{5} \begin{bmatrix} -2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5 \end{bmatrix} \begin{bmatrix} a000 \\ 260$$$

And
$$I = \int_{0}^{\pi/2} \frac{x \sin x \cos x}{\sin^{2} x + \cos^{2} x} dx \longrightarrow 0$$

$$= \int_{0}^{\pi/2} \frac{(x-x)}{\sin^{2} (x-x)} \frac{\sin(\frac{x}{x}-x)}{\sin^{2} (\frac{x}{x}-x)} \frac{\cos(\frac{x}{x}-x)}{x} dx$$

$$I = \int_{0}^{\pi/2} \frac{(x-x)}{\sin^{2} (\frac{x}{x}-x) + \cos^{2} (\frac{x}{x}-x)} dx$$

$$I = \int_{0}^{\pi} \frac{(x-x)}{\cos^{2} (x+x)} \frac{\cos x}{x} dx = \pi \cdot \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^{2} x + \cos^{2} x} dx$$

$$\Rightarrow I = \frac{\pi}{2} \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^{2} x + \cos^{2} x} dx = \pi \cdot \int_{0}^{\pi/2} \frac{\sin x \cos x}{\sin^{2} x + \cos^{2} x} dx$$

$$\Rightarrow I = \frac{\pi}{4} \int_{0}^{\pi/2} \frac{\tan x \cdot \sec^{2} x}{(\tan^{2} x)^{2} + 1} dx \qquad (\because \sin^{2} \sin^{2} x) dx$$

$$\Rightarrow I = \frac{\pi^{2}}{4} \int_{0}^{\pi/2} \frac{\tan x \cdot \sec^{2} x}{(\tan^{2} x)^{2} + 1} dx \qquad (\because \sin^{2} \sin^{2} x) dx = dt$$

$$I = \frac{\pi^{2}}{4} \int_{0}^{\pi/2} \frac{\tan x \cdot \sec^{2} x}{(\tan^{2} x)^{2} + 1} dx \qquad (\land \sin^{2} x) dx = dt$$

$$I = \frac{\pi^{2}}{4} \int_{0}^{\pi/2} \frac{\cos x \cdot \tan^{2}(\sin x)}{(\tan^{2} x)^{2} + 1} dx \qquad OR$$

$$I = \int_{0}^{1} 2x \cdot \tan^{2} t dx = dt$$

$$\therefore I = \int_{0}^{1} 2x \cdot \tan^{2} t dt = dt$$

$$\therefore I = \int_{0}^{1} 2x \cdot \tan^{2} t dt = dt$$

$$\therefore I = \int_{0}^{1} 2x \cdot \tan^{2} t dt = dt$$

$$I = \frac{1}{4} \cdot \tan^{2} t dt = t + \tan^{2} t \int_{0}^{1} = \frac{\pi}{4} - 1$$

$$A35 \int_{0}^{1} [(1, 4] \rightarrow [0, x]]$$

$$I(x) = 16 - x^{2} t dx = 0 + y^{2} \le x = 16 - y^{2} \Rightarrow x = 16$$

Ð

A36.
(i) (a)
$$2x + y = 2x0$$

(b) $A(x) = xy = x (2x0 - 1x)$
(b) $A(x) = xy = x (2x0 - 1x)$
(b) $A(x) = xy = x (2x0 - 1x)$
(b) $A(x) = x(4x0 - 2x)$
 $= 2x0x - 3x^{2}$
(for mx/nin , $\frac{dh}{dx} = 0 \Rightarrow 3x0 - 4x = 0 \Rightarrow x = 50$
Now, $\frac{dh}{dx} = -4 < 0 \therefore A$ is maximum at $x = 50$.
Now, $\frac{dh}{dx} = -4 < 0 \therefore A$ is maximum at $x = 50$.
Thus, Max. $A(x) = 2x0(5x) - 2(5x)^{2} = 50x0 = 5q \cdot m$.
A57.
(i) $P(E_{3}) = 1 - P(E_{3}) = 1 - 0 \cdot 45 = 0 \cdot 35$
(ii) $P(E) = P(E_{3}) \cdot P(A|E_{3}) + P(E_{3}) \cdot P(A|E_{3})$
 $= 0 \cdot 45 \times 0 \cdot 25 + 0 \cdot 35 \times 0 \cdot 8$
 $= 0 \cdot 35 \times 10 \cdot 45 = 0 \cdot 51$
(iii) (B) $P(E_{3}|E) = \frac{P(E_{3}) \cdot P(E|E_{3})}{P(E_{3}) \cdot P(E|E_{3})} = \frac{0 \cdot 65 \times 0 \cdot 25}{0 \cdot 51} = 0 \cdot 45$
(b) $P(E_{3}|E) = \frac{P(E_{3}) \cdot P(E|E_{3})}{P(E_{3}) \cdot P(E|E_{3})} = \frac{0 \cdot 25 \times 0 \cdot 25}{0 \cdot 51} = 0 \cdot 55$
A38.
(i) for the year 2000, $t = 0$ and $V(0) = -2$, and the number of vehicles cait be negative \therefore the given fix. $V(t)$ can't be used,
(ii) $V(t) = \frac{1}{5}t^{\frac{5}{2}} - \frac{5}{2}t^{\frac{1}{2}} + 25t - 2$
 $\Rightarrow V(t) = \frac{3}{5}t^{\frac{1}{2}} - 5t + 25$
 $= \frac{3}{5}\left[\left(t - \frac{25}{6}\right)^{2} + \frac{875}{26}\right] > 0$ always
 $\therefore V(t)$ is an increasing fix.