Name _____

Section____

CRPF PUBLIC SCHOOL, ROHINI, DELHI PRE-BOARD - 1 EXAMINATION (2024-25) CLASS XII MATHEMATICS (SET-A)

Time Allowed: 3 hours

Maximum Marks: 80

General Instructions:

1. This Question paper contains - **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion Reasoning based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment

(4 marks each) with sub parts.

	SECTION – A (MCQ) 1 Mark Questions									
Q1	Let <i>R</i> be a relation in the set <i>N</i> given by $R = \{(a,b) : a = b - 2, b > 6\}$. Then									
	(a) $(8,7) \in \mathbb{R}$ (b) $(6,8) \in \mathbb{R}$									
	(c) $(3,8) \in R$ (d) $(2,4) \in R$									
Q2	If A is a square matrix of order 3 such that $ adj A = 144$, the value of $ A^T $ is:									
	(a) 0 (b) 144 (c) ± 12 (d) 12									
Q3	If $A = \begin{bmatrix} 0 & x+2 \\ 2x-3 & 0 \end{bmatrix}$ is a skew-symmetric matrix, then x is equal to:									
	(a) $\frac{1}{3}$ (b) 5 (c) 3 (d) 1									
Q4	The function $f(x) = \tan x - x$									
	(a) always increases (b) always decreases									
	(c) never increases (d) sometimes increases and sometimes decreases									
Q5	If $A = \begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ and $2A + B$ is a null matrix, then B is equal to :									
	(a) $\begin{bmatrix} 6 & 8 \\ 10 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} -6 & -8 \\ -10 & -4 \end{bmatrix}$									
	(c) $\begin{bmatrix} 5 & 8\\ 10 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -8\\ -10 & -3 \end{bmatrix}$									

Q6	If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and A^2 is the identity matrix, then x is equal to								
	(a) 0 (b) 1 (c) 2 (d) -1								
Q7	Sum of order and degree of the differential equation $\left(\frac{d^2 y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^5 + 4x = 0$ is								
	(a) 6 (b) 3 (c) 4 (d) 5								
Q8	$\int_{-\pi/4}^{\pi/4} x^3 \cos^2 x dx$ is equal to								
	$\int \pi \cos \pi \mathrm{d} \pi \mathrm{d} s$ equal to $-\pi/4$								
	(a) 0 (b) -1 (c) 1 (d) 2								
Q9	The greatest integer function defined by $f(x) = [x], 1 < x < 3$ is not differentiable at $x =$								
	(a) 0 (b) 1 (c) 2 (d) $\frac{3}{2}$								
Q10	The solution of the differential equation $\frac{dx}{x} + \frac{dy}{y} = 0$ is :								
	(a) $\frac{1}{1} + \frac{1}{2} = C$ (b) $\log x - \log y = C$								
	ху								
	(c) $xy = C$ (d) $x + y = C$								
Q11	The minimum value of $z = 3x + 8y$ subject to the constraints $x \le 20$, $y \ge 10$ and $x \ge 0$, $y \ge 0$ is								
	(a) 80 (b) 140								
	(c) 0 (d) 60								
Q12	Corner points of feasible region for an LPP are (0,2), (3,0), (6,0) (6,8) and (0,5).								
	Let $F = 4x + 6y$ be the objective function. Minimum value of F occurs at (a) (0.2)								
	(b) (3,0)								
	(c) The mid-point of the line segment joining the points $(0,2)$ and $(3,0)$ only (d) Any point on the line segment joining the points $(0,2)$ and $(2,0)$								
	(d) Any point on the line segment joining the points (0,2) and (5,0)								
Q13	For the function $f(x) = x^3$, $x = 0$ is a point of								
	(a) local maxima (c) non-differentiability (b) local minima (d) inflexion								
Q14	If $P(A \cap B) = \frac{1}{8}$ and $P(\overline{A}) = \frac{3}{4}$, then $P\left(\frac{B}{A}\right)$ is equal to :								
	(a) $\frac{1}{2}$ (b) $\frac{1}{3}$								
	(c) $\frac{1}{6}$ (d) $\frac{2}{3}$								

Q15	If a vector makes an angle of $\frac{\pi}{4}$ with the positive directions of both x-axis							
	and y-axis, the	en the angle which	it make	s with positi	ve z-axis is :			
	(a) $\frac{\pi}{4}$		(b)	$\frac{3\pi}{4}$				
	(c) $\frac{\pi}{2}$		(d)	0				
016								
QIU	$\int 2^{x+2} dx$ is equivalent to the second	ual to :						
	(a) $2^{x+2} + 0$	3	(b)	$2^{x+2} \log 2 +$	C			
	(c) $\frac{2^{x+2}}{\log 2} +$	С	(d)	$2 \cdot \frac{2^x}{\log 2} + 0$	C			
Q17	$\int \frac{x+3}{(x+3)^2} e^x dx =$?						
	(x+4)	a ^x		1	° ^x			
	(a) $\frac{e}{x+4} + c$	(b) $\frac{e}{x+3}+c$	(c) $\frac{1}{\sqrt{2}}$	$\frac{1}{x+4}^{2}+c$	(d) $\frac{e}{\left(x+4\right)^2} + c$			
Q18	Direction cosine	s of a line perpendicu	ılar to botl	h <i>x –</i> axis and	l z - axis are			
	(a) 1, 0, 1	(b) 1, 1, 1	(c)	0, 0, 1	(d) 0, 1, 0			
		Assertion Reason	ing Base	d Questions				
Given	below are two sta	Assertion Reason	ing Base led as Ass	d Questions	the other is labelled as			
Given Reaso In the	below are two stand n R. light of the abov	Assertion Reason atements: one is label ve statements, choose	ing Base led as Ass the <i>most</i>	d Questions sertion A and the appropriate	the other is labelled as answer from the options			
Given Reaso In the given	below are two stands	Assertion Reason atements: one is label we statements, choose	ing Based led as Ass the <i>most</i>	d Questions sertion A and t t appropriate	the other is labelled as answer from the options			
Given Reaso In the given a. b.	below are two stand n R. light of the above below Both A and R and Both A and R and Both A and R and	Assertion Reason atements: one is label we statements, choose re correct and R is the re correct but R is N	hing Based led as Ass the <i>most</i> e correct e DT the cor	d Questions sertion A and the sertion A and the sertion A and the sertion A and the sertion of the sertion and the	the other is labelled as answer from the options A on of A			
Given Reaso In the given a. b. c.	below are two sta on R . light of the above below Both A and R and Both A and R and A is correct but	Assertion Reason atements: one is label we statements, choose re correct and R is the re correct but R is NC R is not correct	hing Based led as Ass the <i>most</i> e correct e DT the cor	d Questions sertion A and the sertion A and the sertion A and the sertion A and the sertion of the sertion of the sertion of the sertion and t	the other is labelled as answer from the options A on of A			
Given Reaso In the given a. b. c. d.	below are two sta on R. light of the above below Both A and R and Both A and R and A is correct but A is not correct	Assertion Reason atements: one is label we statements, choose re correct and R is the re correct but R is NC R is not correct but R is correct	hing Based led as Ass the <i>most</i> e correct e DT the cor	d Questions sertion A and f t appropriate xplanation of a rect explanation	the other is labelled as answer from the options A on of A			
Given Reaso In the given a. b. c. d. Q19	below are two stands are two stands and the stand and the stands and the stands are stands and the stands are stands are stands are are as a stand are as a standard are as a	Assertion Reason atements: one is label we statements, choose the correct and R is the the correct but R is NO R is not correct but R is correct For matrix $A = \begin{bmatrix} - \\ - \end{bmatrix}$	hing Based led as Ass the most e correct e DT the corr 1 $-\cos \theta$ -1 -	d Questions sertion A and f t appropriate xplanation of f rect explanation $\cos \theta$ 1 $1 \cos \theta$ $-\cos \theta$ 1	the other is labelled as answer from the options A on of A , where $\theta \in [0, 2\pi]$,			
Given Reaso In the given a. b. c. d. Q19	below are two stands and R. light of the above below Both A and R and B and A and R and A and R and A and R and A is correct but A is not correct Assertion (A) :	Assertion Reason atements: one is label we statements, choose the correct and R is the the correct but R is NO R is not correct but R is correct For matrix $A = \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	hing Based led as Ass the most e correct e DT the correct 1 $-\cos \theta$ -1 -	d Questions sertion A and a t appropriate xplanation of a rect explanation $\cos \theta = 1$ $1 = \cos \theta$ $-\cos \theta = 1$	the other is labelled as answer from the options A on of A $\left[, \text{ where } \theta \in [0, 2\pi],\right]$			
Given Reaso In the given a. b. c. d. Q19	below are two states on R . light of the above below Both A and R and R and A and R and A and R and A and R and A is correct but A is not correct Assertion (A) : Reason (R) :	Assertion Reason atements: one is label we statements, choose re correct and R is the re correct but R is NC R is not correct but R is correct For matrix $A = \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	hing Based led as Ass the most the correct e DT the correct Γ 1 $-\cos \theta$ -1 $-\cos \theta$ -1 $-\cos \theta$ -1 $-\cos \theta$ -1 $-\cos \theta$	d Questions sertion A and f appropriate xplanation of f rect explanation $\cos \theta = 1$ $1 = \cos \theta$ $-\cos \theta = 1$	the other is labelled as answer from the options A on of A $\left[, \text{ where } \theta \in [0, 2\pi],\right]$			
Given Reaso In the given a. b. c. d. Q19	below are two states on R . light of the above below Both A and R and R and A and R and A and R and A and R and A is correct but A is not correct Assertion (A) : Reason (R) :	Assertion Reason attements: one is label we statements, choose the correct and R is the the correct but R is NC R is not correct but R is correct For matrix $A = \begin{bmatrix} -\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ing Based led as Ass the most e the most e correct e DT the corr 1 − cos θ − 1 − θ ∈ [0, 2π	d Questions sertion A and a t appropriate xplanation of a rect explanation $\cos \theta = 1$ $1 = \cos \theta$ $-\cos \theta = 1$	the other is labelled as answer from the options A on of A $\left[, \text{ where } \theta \in [0, 2\pi],\right]$			
Given Reaso In the given a. b. c. d. Q19 Q20	below are two stands R . light of the above below Both A and R and A is correct but A is not correct Assertion (A) : Reason (R) :	Assertion Reason attements: one is label we statements, choose re correct and R is the re correct but R is NO R is not correct but R is correct For matrix $A = \begin{bmatrix} -\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	hing Based led as Ass the most e correct e DT the correct 1 $-\cos \theta$ -1 $-\theta \in [0, 2\pi]he points$	d Questions sertion A and a t appropriate xplanation of A rect explanation $\cos \theta = 1$ $1 = \cos \theta$ $-\cos \theta = 1$ (4, 7, 8) and	the other is labelled as answer from the options A on of A $\left[, \text{ where } \theta \in [0, 2\pi], \\ 1 (2, 3, 4) \text{ is parallel}\right]$			
Given Reaso In the given a. b. c. d. Q19 Q20	below are two stan R. light of the above below Both A and R and A and R and A is correct but A is not correct Assertion (A) : Reason (R) :	Assertion Reason attements: one is label we statements, choose re correct and R is the re correct but R is NO R is not correct but R is correct For matrix $A = \begin{bmatrix} -\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	hing Based led as Ass the most e correct e OT the cor 1 $-\cos \theta$ -1 $-\theta \in [0, 2\pi)he pointsthe point$	d Questions sertion A and a t appropriate xplanation of a rect explanation $\cos \theta = 1$ $1 = \cos \theta$ $-\cos \theta = 1$ []. (4, 7, 8) and $\cos (-1, -2, 1)$	the other is labelled as answer from the options A on of A $\left[, \text{ where } \theta \in [0, 2\pi], \\ 1 (2, 3, 4) \text{ is parallel} \\ 1 \text{ and } (1, 2, 5). \\ \end{bmatrix}$			
Given Reaso In the given a. b. c. d. Q19 Q20	below are two stan R. light of the above below Both A and R and B and R and A is correct but A is not correct <i>Assertion (A) :</i> <i>Reason (R) :</i> <i>Reason (R):</i>	Assertion Reason atements: one is label we statements, choose re correct and R is the re correct but R is NO R is not correct but R is correct For matrix $A = \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	hing Based led as Ass the most correct e DT the correct 1 $-\cos \theta$ -1 $-\theta \in [0, 2\pi]he pointsthe point\lambda \overrightarrow{b_1} and$	d Questions sertion A and f <i>appropriate</i> xplanation of f rect explanation $\cos \theta$ 1 1 $\cos \theta$ $-\cos \theta$ 1 []. (4, 7, 8) and $\sin (-1, -2, 1)$ d $\overrightarrow{r} = \overrightarrow{a_2} + $	the other is labelled as answer from the options A on of A , where $\theta \in [0, 2\pi]$, 1 (2, 3, 4) is parallel) and $(1, 2, 5)$. $\cdot \mu \vec{b_2}$ are parallel if			
Given Reaso In the given a. b. c. d. Q19 Q20	below are two stan R. light of the above below Both A and R and A is correct but A is not correct <i>Assertion (A) :</i> <i>Reason (R) :</i> <i>Reason (R):</i>	Assertion Reason atements: one is label we statements, choose re correct and R is the re correct but R is NO R is not correct but R is correct For matrix $A = \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	hing Based led as Ass the most correct e DT the correct 1 $-\cos \theta$ -1 $-\theta \in [0, 2\pi)he pointsthe pointsthe points\lambda \overrightarrow{b_1} and$	d Questions sertion A and a t appropriate xplanation of a rect explanation $\cos \theta = 1$ $1 = \cos \theta$ $-\cos \theta = 1$ []. (4, 7, 8) and $\sin (-1, -2, 1)$ $d = r = a_2^2 + 1$	the other is labelled as answer from the options A on of A $\left[, \text{ where } \theta \in [0, 2\pi], \right]$ $\left[(2, 3, 4) \text{ is parallel} \\ \text{ and } (1, 2, 5). \\ \cdot \mu \overrightarrow{b_2} \text{ are parallel if} \right]$			

	SECTION – B (Very Short Answer (VSA)-type questions) 2 Marks Each							
Q21	Evaluat	te sir	n^{-1} (s	$ in \frac{3\pi}{4} $	$\left(\frac{1}{2}\right) + cc$	os ⁻¹ ($\cos \pi$) + tan ⁻¹ (1).	
	OR							
	Evaluate t	he fol	llowin	ıg: sir	$n\left(\frac{\pi}{6}-\right)$	sin ⁻¹	$\left(-\frac{\sqrt{3}}{2}\right)$	
Q22	If $\vec{a} = \hat{i} + 2$ find a unit	j+3i t vecto	$\hat{k}, \vec{b} =$	$2\hat{i} + 4$ rallel	$\frac{j-5}{j-5}$ to the	\hat{k} repudiago	resents two adjacent sides of a parallelogram, onal of the parallelogram.	
Q23	The area of the circle is increasing at a uniform rate of $2 \text{ cm}^2/\text{sec.}$ How fast is the circumference of the circle increasing when the radius $r = 5 \text{ cm}$? OR							
	Show th	nat th	ne fur	nction	n f giv	ven by	$f(x) = \sin x + \cos x$, is strictly decreasing	
	in the in	nterv	$\operatorname{al}\left(\frac{\pi}{4}\right)$	$\left(,\frac{5\pi}{4}\right)$				
Q24	Show th	at th	ne fur	nction	n f(x)	= 4x	$x^3 - 18x^2 + 27x - 7$ has neither maxima	
	nor mini	ima.						
Q25	If $y = (\sin^{-1}x)^2$, then find $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx}$.							
	SECT	TION	- C (Short	Ansv	wer (S	SA)-type questions) 3 Marks Each	
Q26	Solve the	e foll	owing	g L.P	.P. gr	raphi	cally :	
	Maximise $Z = 60x + 40y$							
	Subject to $x + 2y \le 12$							
	$2x + y \le 12$							
	$4x + 5y \ge 20$							
	$x, y \ge 0$							
Q27	Two bal	ls ar	e dra	wn a	t ran	dom	one by one with replacement from an	
	urn con	taini	ng eo	qual	num	ber o	f red balls and green balls. Find the	
	probability distribution of number of red balls. Also, find the mean of							
	the random variable.							
							OP	
	The ran	dom	varia	ble X	has	the fo	ollowing probability distribution where a	
	and b and	re sor	ne co	nstan	ts:			
	X	1	2	3	4	5		
	P(X)	0.2	а	а	0.2	b		
			EGO	_ 0		<u>c</u> 1		
	P(X \ge 3)	iean	$\mathbf{E}(\mathbf{X})$	– 3,	then	nna	values of a and b and hence determine	

Q28	Find $\int \frac{2x}{dx} dx$						
	$(x^2+1)(x^2-4)$						
	OR						
	Evaluate : $\int \frac{2x+1}{\sqrt{3+2x-x^2}} dx$						
Q29	Find the general solution of the differential equation :						
	$(x^{2} + 1) \frac{\mathrm{dy}}{\mathrm{dx}} + 2xy = \sqrt{x^{2} + 4}$						
	OR Find the particular solution of the differential equation						
	<u>y</u>						
030	$(xe^{x} + y) dx = x dy$, given that $y = 1$ when $x = 1$.						
Q30	Find the area of the region bounded by the lines $x - 2y = 4$, $x = -1$, $x = 6$ and x axis, using integration						
	and x-axis, using integration.						
Q31	Differentiate the following function with respect to x						
	$y = (sinx)^x + sin^{-1}\sqrt{x}$						
	SECTION – D (Long Answer (LA)-type questions) 5 Marks Each						
Q32							
	Find the inverse of matrix $A = \begin{bmatrix} 3 & -2 & 2 \\ 4 & 2 & -3 \end{bmatrix}$						
	$\begin{bmatrix} -2 & -3 \end{bmatrix}$						
	2r + 3y + 4z - 17 3r - 2y + 2z - 11 4r + 2y - 3z - 8						
033	$\mathbf{E} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = $						
Q33	vector equations are:						
	$\overrightarrow{\mathbf{r}} = \overrightarrow{\mathbf{i}} + 2\overrightarrow{\mathbf{j}} - 4\overrightarrow{\mathbf{k}} + \lambda(2\overrightarrow{\mathbf{i}} + 3\overrightarrow{\mathbf{j}} + 6\overrightarrow{\mathbf{k}})$ and						
	$\overrightarrow{\mathbf{r}} = 3\overrightarrow{\mathbf{i}} - 3\overrightarrow{\mathbf{j}} - 5\overrightarrow{\mathbf{k}} + \mu(-2\overrightarrow{\mathbf{i}} + 3\overrightarrow{\mathbf{j}} + 8\overrightarrow{\mathbf{k}})$						
	OR						
	Find the co-ordinates of the foot of the perpendicular drawn from the						
	4-x y $1-z$						
	point (2, 3, -8) to the line $\frac{-2}{2} = \frac{-6}{6} = \frac{-3}{3}$.						
	Also, find the perpendicular distance of the given point from the line.						

	Based on the above information:					
	(a) Calculate the probability that a randomly chosen seed will germinate.					
	(b) Calculate the probability that the seed is of type A2, given that a random	omly				
	chosen seed germinates.					
038						
Q30	An instructor at the astronomical centre shows three among the bright stars in a particular constellation. Assume that the telescope is located	test Lat				
	O(0, 0, 0) and the three stars have their locations at the points D, A and V					
	having position vectors $2\hat{i} + 3\hat{j} + 4\hat{k}$, $7\hat{i} + 5\hat{j} + 8\hat{k}$ and $-3\hat{i} + 7\hat{j} + 3\hat{j}$	11k				
	respectively.					
	V D					
	Based on the above information, answer the following questions :					
	(i) How far is the star V from star A?	1				
	(ii) Find a unit vector in the direction of \overrightarrow{DA} .	1				
	(iii) Find the measure of $\angle VDA$.	2				
	OR					
	(iii) What is the projection of vector \overrightarrow{DV} on vector \overrightarrow{DA} ?	2				