

SOLVED SAMPLE QUESTION PAPERS CLASS XII MATHEMATICS SESSION 2024-25

PREPARED BY SAIJI B R TA MATHS ZIET MUMBAI

Sample Paper -01, SESSION 2024-25 CLASS: XII MATHEMATICS (Code-041) BLUE – PRINT

UNITS	NAME OF CHAPTERS	SECTION A (Objective Type) (1 M EACH)		SECTION B (VSA) (2 MS	SECTION C (SA) (3 MS	SECTION D (LA) (5	SECTION E (CBQ) (4 MS	TOTAL	
		MCQ	ARQ	EACH)	EACH)	MARKS EACH)	EACH)		
UNIT-I (Relations	RELATIONS AND FUNCTIONS			2(1)		5*(1)		8(3)	
& Functions)	INVERSE TRIGONOMETRY FUNCTION		1(1)						
UNIT-II	MATRICES	2(2)						10(0)	
(Algebra)	DETERMINANT	3(3)				5(1)		10(6)	
UNIT-III (calculus)	CONTINUITY & DIFFERENTIABILITY	2(2)		2*(1)	3(1)				
	APPLICATION OF DERIVATIVE	2(2)					4*(1)		
	INTEGRATION	2(2)		2(1)	3*(1)	5*(1)		35(17)	
	APPLICATION OF INTEGRATION			2*(1)	3(1)				
	DIFFERENTIAL EQUATION	2(2)			3*(1)				
UNIT-IV	VECTORS	1(1)		2(1)					
(Vectors & 3D)	THREE- DIMENSIONAL GEOMETRY	1(1)	1(1)			5(1)	4*(1)	14(6)	
UNIT-V (LPP)	LPP	2(2)			3(1)			5(3)	
UNIT-VI (Probability)	PROBABILITY	1(1)			3*(1)		4(1)	8(3)	
	TOTAL	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)	

(*) represents question with internal choice. Marks are mentioned outside brackets. No. of questions - within the brackets.

SAMPLE QUESTION PAPER-01 SESSION 2024-25 CLASS: XII SUBJECT: -MATHEMATICS (041)

Time: - 3 Hours

Max Marks: - 80

General Instructions:

Read the following instructions very carefully and strictly follow them:

(i) This Question paper contains 38 questions. All questions are compulsory.

(ii)This Question paper is divided into five Sections - A, B, C, D and E.

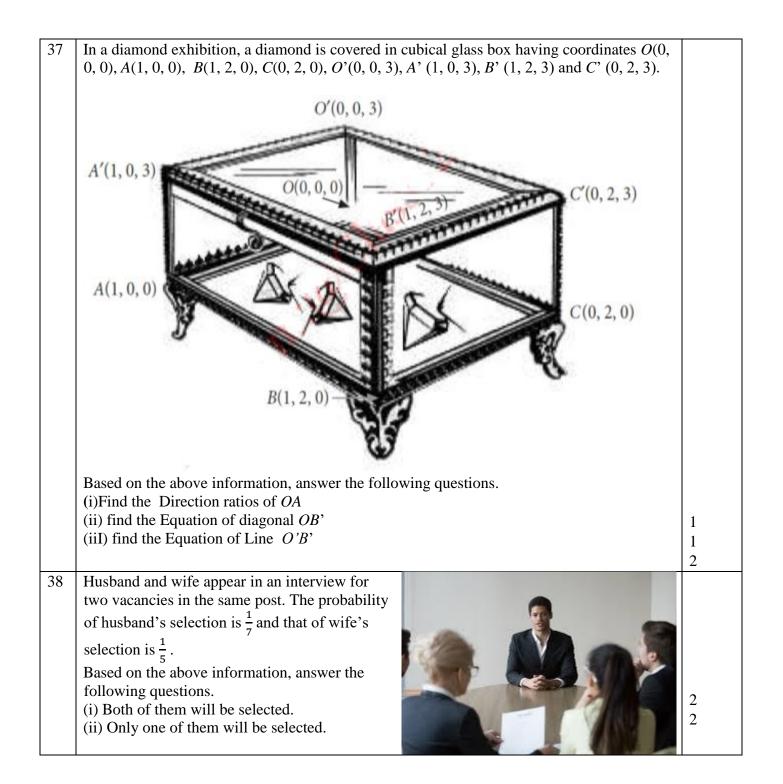
(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.

(iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.

(v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.

(vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.

(vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.(viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.


Q .	SECTION A	Marks						
No	(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the							
	correct option (Question 1 - Question 18):							
1	If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix}$, then $A + A' = I$, if the value of α is	1						
	(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{3\pi}{2}$							
2	If $A = [a_{ij}]$ is a symmetric matrix of order n, then	1						
	(a) $a_{ij} = \frac{1}{a_{ij}}$ for all i,j (b) $a_{ij} \neq 0$ for all i,j							
	(c) $a_{ij} = a_{ji}$ for all i, j (d) $a_{ij} = 0$ for all i, j							
3	Let A be a non-singular square matrix of order 3×3 and $ adj A = 8$ then $ A $ is equal to	1						
	(a) ± 64 (b) ± 16 (c) ± 8 (d) none of the these							
4	For what value of x, matrix $\begin{bmatrix} 6-x & 4\\ 3-x & 1 \end{bmatrix}$ is a singular matrix?	1						
	(a) 1 (b) 2 (c) -1 (d) -2							
5	If A and B are invertible matrices, then which of the following is not correct?	1						
	(a) $adj A = A . A^{-1}$ (b) $det(A)^{-1} = [det (A)]^{-1}$							
	(c) $(AB)^{-1} = B^{-1} A^{-1}$ (d) $(A + B)^{-1} = B^{-1} + A^{-1}$							
6	The function $f(x) = [x]$, where [x] denotes the greatest integer function, is continuous at	1						

	(a) 4 (b) -2 (c) 1 (d) 1.5	
7	(a) 4 (b) - 2 (c) 1 (d) 1.5 Derivative of sec $(\tan^{-1}x)$ w.r.t. x is	1
	(a) $\frac{x}{\sqrt{1+x^2}}$ (b) $\frac{x}{1+x^2}$ (c) $x\sqrt{1+x^2}$ (d) $\frac{1}{\sqrt{1+x^2}}$	
8	The rate of change of the area of a circle with respect to its radius r, at $r = 6$ cm is	1
	(a) 10π (b) 12π (c) 8π (d) 11π On which of the following intervals is the function <i>f</i> given by $f(x) = x^{100} + \sin x - 1$	
9		1
	decreasing? (a) (0,1) (b) (π, π) (c) (0, π) (d) None of these	
	(a) (0,1) (b)($\frac{\pi}{2},\pi$) (c)($0,\frac{\pi}{2}$) (d) None of these	
10	$\int \frac{dx}{\sin^2 x \cos^2 x}$ is equal to	1
	(a) $\tan x + \cot x + c$ (b) $\sin x + \cos x + c$ (c) $\tan x - \cot x + c$ (d) $\sin x - \cos x + c$	
11	(c) $\tan x - \cot x + c$ (d) $\sin x - \cos x + c$ The value of $\int_{a}^{-a} \sin^{3}x dx$ is	1
11		1
12	(a) a(b) a/3(c) 1(d) 0The sum of the order and degree of the differential equation	1
	$\left(\frac{d^2 v}{dx}\right)^3$ $\left(\frac{dv}{dx}\right)^2$ $\frac{dv}{dx}$	-
	$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} + 1 = 0$ is	
13	(a) 3(b) 2(c) 1(d) 5Integrating factor of the differential equation $x^2 \frac{dy}{dx} + xy = x^3$ is:	1
	(a) x^2 (b) x (c) a^{χ} (d) a^{χ^2}	
14	(a) x^2 (b) x(c) e^x (d) e^{x^2} If \vec{a} is nonzero vector of magnitude 'a' and λ is a nonzero scalar, then $\lambda \vec{a}$ is unit vector if	1
17	(a) $\lambda = 1$ (b) $\lambda = -1$ (c) $a = \lambda $ (d) $a = \frac{1}{ \lambda }$	1
15	(a) $\lambda = 1$ (b) $\lambda = -1$ (c) $a = \lambda $ (d) $a = \frac{1}{ \lambda }$ The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the <i>x</i> -axis	1
15	The coordinates of the foot of the perpendicular drawn from the point $(2, 5, 7)$ on the x-axis are given by	1
	$\begin{array}{c} \text{are given by} \\ (a) (2, 0, 0) \\ (b) (5, 0, 0) \\ (c) (7, 0, 0) \\ (d) (0, 5, 7) \end{array}$	
16	The feasible solution for a LPP is shown	1
	in given figure. Let $Z = 3x-4y$ be the (4.10)	
	objective function. Minimum of Z occurs at $(0, 8)$	
	a) (0,0)	
	b) (0,8)	
	c) (5,0)	
	d) $(4,10)$ (0,0) (5,0)	
17	Inequation $y - x \le 0$ represents	1
	(a) The half plane that contains the positive x-axis	
	(b) Closed half plane above the line $y = x$, which contains positive y-axis (c) Half plane that contains the negative x axis	
	(c) Half plane that contains the negative x-axis(d) None of these	
		1

18	If A and B are two events such that $P(A) + P(B) - P(A \text{ and } B) = P(A)$, then (a) $P(B/A) = 1$ (b) $P(A/B) = 1$ (c) $P(A/B) = 0$ (d) $P(B/A) = 0$	1
Bot	ASSERTION-REASON BASED QUESTIONS (Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Tw atements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the co answer from the options (A), (B), (C) and (D) as given below.) th A and R are true and R is the correct explanation of A.	
(a) (b) (c)	Both A and R are true but R is not the correct explanation of A. A is true but R is false. A is false but R is true.	
19	A : The Principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) + 2 \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is equal to $\frac{5\pi}{4}$ R : Domain of $\cos^{-1} x$ and $\sin^{-1} x$ are respectively $(0, \pi)$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	1
20	A: The following straight lines $L_1 \& L_2$ are perpendicular to each other. $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4} \text{ and } \frac{1-x}{-1} = \frac{y+2}{2} = \frac{3-z}{3}$ R : Let line L_1 passes through the point (x_1, y_1, z_1) and parallel to the vector whose direction ratios are a_1, b_1 , and c_1 , and let line L_2 passes through the point (x_2, y_2, z_2) and parallel to the vector whose direction ratios are a_2, b_2 , and c_2 . Then the lines $L_1 \& L_2$ are perpendicular if $a_1.a_2 + b_1.b_2 + c_1.c_2 = 0$	1
	SECTION B (This section comprises of 5 very short answer (VSA) type questions of 2 marks each.))
21	Check whether the relation R in the set R of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ is transitive.	2
22	Find $\frac{dy}{dx}$ of the function $y^x = x^y$ OR Find the values of k so that the function f is continuous at the indicated point $f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases}$ at $x = \pi$	2
23	Find primitive of the function: $\frac{\sin(tan^{-1}x)}{1+x^2}$	2
24	Using integration find the area of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$. OR Using integration find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.	2
25	If $\vec{a}, \vec{b}, \vec{c}$ are non-zero vectors such that $[\vec{a}] = 2, [\vec{b}] = 3, [\vec{c}] = 5$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. find the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$.	2
	SECTION C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	<u>ı</u>
	(This section comprises of a short answer (SA) type questions of 5 marks cacht.)	

27	$\sum_{x \in A} \int \frac{\sin x}{\sin x} dx$	3
	Evaluate: $\int \frac{\sin x}{\sin(x-a)} dx$	
	OR	
	Evaluate: $\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2 x} dx$	
28	Find the area of the region bounded by the parabola $y = x^2$ and $y = x $.	3
29	Solve the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ OR	3
•	Solve the differential equation $x \frac{dy}{dx} + 2y = x^2$; $(x \neq 0)$	
30	Solve the following Linear Programming Problem graphically:	3
	Maximize $Z = 5x + 2y$,	
	subject to the constraints:	
	$x - 2y \le 2,$	
	$3x + 2y \le 12,$	
	$-3x + 2y \le 3,$	
	$\mathbf{x} \ge 0$, $\mathbf{y} \ge 0$.	
31	Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find E(X). OR	3
	The random variable X has a probability distribution $P(X)$ of the following form, where k is	
	some number: (k, if x = 0)	
	$P(X) = \begin{cases} k, & if \ x = 0\\ 2k, & if \ x = 1\\ 3k, & if \ x = 2 \end{cases}$	
	$ \begin{cases} 3k, & if \ x = 2 \\ 0, & otherwise \end{cases} $	
	(a) Determine the value of <i>k</i> .	
	(b) Find P (X < 2), (c) $F_{1} = 4 P (X > 2)$	
	(c) Find P ($X \ge 2$), SECTION D	
	(This section comprises of 4 long answer (LA) type questions of 5 marks each)	
32	Let A = R - {3}, B = R - {1}. Let f : A \rightarrow B be defined by f (x) = $\frac{x-2}{x-3}$ $\forall x \in A$. Then	5
	show that f is bijective. OR	
	Let n be a fixed positive integer. Define a relation R in Z as follows: $\forall a, b \in Z$, aRb if and only if $a - b$ is divisible by n. Show that R is an equivalence relation.	

33	Determine the product $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to solve the system of equations $-4x + 4y + 4z = 16$, $-7x + y + 3z = 4$ 5x - 3y - z = -4	5
34	5x - 3y - z = -4. Evaluate $\int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2\log x \right]}{x^4} dx$	5
	x^4 OR	
	Evaluate $\int_{0}^{\frac{\pi}{2}} \log \cos x dx$.	
35	Find the vector equation & cartesian equations of the line which is perpendicular to the lines	5
	with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$	
	and passes through the point $(1,1,1)$. Also find the angle between the given lines.	
	SECTION E	·
	is section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. T vo case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third study question has two subparts of 2 marks each)	
36	The Government declare that farmers can get Rs 300 per quintal for their Tomatoes on 1st July and after that, the price will be dropped by Rs 3 per quintal per extra day. Raman's father has 80 quintal of Tomatoes in the field on 1st July and he estimates that crop is increasing at the rate of 1 quintal per day.	
	 Based on the above information, answer the following questions. (i) If x is the number of days after 1st July, then write price and quantity of Tomato in terms of x. (ii) Find the Revenue in terms of x. (iii) Find the number of days after 1st July, when Raman's father attains maximum revenue. OR On which day should Raman's father harvest the tomatoes to maximise his revenue?	1 1 2

MARKING SCHEME SOP-01, 2024-25 CLASS: XII SUBJECT: MATHEMATICS (041)

Q. No		<u>SECTION – A</u>							
	1	(b)	6	(4)	11	(4)	16	(b)	20
	2	(b) (c)	7	(d) (a)	11	(d) (d)	10	(b) (a)	
	3	(d)	8	(a) (b)	12	(u) (b)	17	(a) (b)	
	4	(b)	9	(d)	13	(d)	10	(c)	
	5	(d)	10	(c)	15	(a)	20	(a)	
				. ,	CTION – B	. ,			<u> </u>
21	Given a co \therefore R is not		-						1 1
22	Differenti So $\frac{dy}{dx} = \frac{y}{x}$	king logarithm on both sides1ferentiating both sides with respect to x1 $\frac{dy}{dx} = \frac{y(y-x\log y)}{x(x-y\log x)}$ 1							1 1
	$f(x) \text{ is constrained}$ $LHL = RI$ $k = \frac{-2}{\pi}$ Let tan^{-1}	$HL = f(\pi)$							1 1
23	Let tan^{-1}	x = t	$an^{-1}x) + c$						$\frac{1/2}{1 \frac{1}{2}}$
24		cos (ta ct diagram							1 72
27	$y = \sqrt{5^2}$		L						1/2
	$y = \sqrt{3}$	$\frac{\lambda}{25\pi}$	square uni	-c					, 2
	Ol	-	square uni						1
	For correc								1⁄2
	$y = \frac{4}{5}\sqrt{5^2}$								1/2
	0		uare units.						1
25	a,b,c are u								
	$ \vec{a} =2, \vec{b} $	=3, <i>č</i> =5							1
	$\vec{a} + \vec{b} + \vec{c}$		en)						
	$\therefore (\vec{a} + \vec{b} + \vec{b})$								
	•		$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c}$	$+ \vec{c} \cdot \vec{a} = 0$					
		•	$\vec{c} + \vec{c} \cdot \vec{a}$						
	$\therefore \vec{a} \cdot \vec{b} + \vec{b}$.			v					1

	SECTION C	
26	$y = 3\cos(\log x) + 4\sin(\log x)$	
	$\frac{\mathrm{dy}}{\mathrm{dx}} = -3\sin(\log x)\frac{1}{x} + 4\cos(\log x)\frac{1}{x}$	
		1
	$x\frac{\mathrm{dy}}{\mathrm{dx}} = -3\sin(\log x) + 4\cos(\log x)$	
	$x\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = -3\cos(\log x)\frac{1}{x} - 4\sin(\log x)\frac{1}{x}$	1
	$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} = -\{3\cos(\log x) + 4\sin(\log x)\}$	
	$ \begin{aligned} dx^2 & dx \\ x^2y_2 + xy_1 + y &= 0 \end{aligned} $	1
27		1 1/2
	Put t =x-a	/ _
	$a\sin(t+a)$	1⁄2
	So $\int \frac{\sin(t+a)}{\sin t} dt$	
	So ans is $\sin a \log \sin(x - a) + x \cos a + c$	2
	$50 \text{ ans is sin } u \log[\sin(x - u)] + x \cos u + c$	2
	OR	
	Let sinx-cosx=t	1/
	Let shix cosx-t	1⁄2
	$\int_{0}^{0} dt$	1
	$\int_{-1}^{0} \frac{dt}{9 + 16(1 - t^2)}$	
	-1	1 1⁄2
	Ans is $\frac{\log 9}{40}$	
28		1/2
20	For correct diagram A= $2 \int_0^1 x dx - 2 \int_0^1 x^2 dx$	⁷² 1
	$A=2 \int_0^{\infty} x dx = 2 \int_0^{\infty} x dx$ Required area = 1/3 sq. unit	1 1/2
	It is a homogenous differential equation,	
29	Put y= vx	1
	Then $dv = dx/x$	1
	$\frac{y}{x} = \log cx$	
		1
	$x = ke^{\frac{y}{x}}$	
	OR OR	
	$\frac{dy}{dx} + 2\frac{y}{x} = x$	1⁄2
	$I.F. = x^2$	1
	$\frac{dy}{dx} + 2\frac{y}{x} = x$ I.F. = x^2 $yx^2 = \frac{x^4}{4} + c$	
	- 4 	1.5

0.0										
30	correct grap		ints					1		
				$x = \frac{7}{2} v$	$=\frac{3}{2}$ and	maximu	m value = 19	1		
31	X can take		2731	<u>, </u>	- and 4	1110/111110	in vinue – 17	1		
51	(∵1 cannot l				er selecte	ed numb	er)	1		
	X	2	3	4	5	6	, ,			
	P(X)	2	4	6	8	10				
		30	30	30	30	30		1		
	X.P(X)	$\frac{4}{20}$	12	$\frac{24}{22}$	$\frac{40}{20}$	60				
		30	30	30	30	30				
				4+1	2+24+40+	·60 140	14	1		
	Mean of X=	=E(X)	=∑X P(2	\mathbf{X}) = $\frac{1}{1}$	30	$-=\frac{110}{30}$	$=\frac{1}{3}$	I		
	The render	Nomin	bla V L	a a mak	obility J	OR	$\mathbf{P}(\mathbf{V})$ of the following form where L			
	some numb		idle A na	is a prob	abiiity d	istridutic	on $P(X)$ of the following form, where k is			
	X	0	1	2	OTH	ERWIS	E			
	P(X)	K	2K	3K		0				
			f all prol			be		1		
	\Rightarrow k+2k+3k=1 \Rightarrow k=1/6							1		
	(b) $\Gamma(X < 2) - p(X = 0) + p(X = 1) - K + 2K - 3(\frac{1}{6}) - \frac{1}{2}$									
	(c) $P(x \ge 2) = 3k + 0 = 3(\frac{1}{6}) + 0 = \frac{1}{2}$									
			(, 4	<u>S</u> E	CTION	D			
32	For ONE -C	ONE						2.5		
	For Onto:							2.5		
						OR				
	Reflexivity: R is reflexive							1.5		
	Symmetry:	Ξ.						1.5		
	R is symmet	ric						1.5		
	Transitivity	:						2		
	R is transitiv		D 1 1							
22	∴R is Equiva	alence	Relation.	<u> </u>	<u>/</u> , 1 [1	1	1 1 [8 0 0]	1		
33					$\frac{4}{3}$	-1 -2	$ \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} $	1		
				5 -3	-1	1				
					11	$\frac{1}{5}\begin{bmatrix} 1 & -1\\ 1 & -2\\ 2 & 1 \end{bmatrix}$				
					$B^{-} = \frac{1}{8}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{-2}{1}$	$\begin{bmatrix} -2\\ 3 \end{bmatrix}$	1		
	Matrix form	n of ec	quations			L2 1	L C			
			-							
								1		

	$(-4 \ 4 \ 4)$ [16]	
	$\frac{1}{8} \begin{vmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 16 \\ 4 \\ -4 \end{vmatrix}$	
		2
	$X=B^{-1}C$	
24	Hence $x = 1$, $y = 2$ and $z = 3$.	1
34	$\int \sqrt{\frac{x^2+1}{x^2}} \log(\frac{x^2+1}{x^2}) \frac{1}{x^3} dx$	1
	Put $\sqrt{\frac{x^2+1}{x^2}} = t$, Required answer $= -\frac{1}{3} \left[\frac{x^2+1}{x^2} \right]^{\frac{3}{2}} \left[\log \frac{x^2+1}{x^2} - \frac{2}{3} \right] + c$	1
	Let $I = \int_{0}^{\frac{\pi}{2}} \log \cos x dx(i)$	3
	Then, using P-4	5
	$I = \int_{0}^{\frac{\pi}{2}} \log \cos(\frac{\pi}{2} - x) dx = \int_{0}^{\frac{\pi}{2}} \log \sin x dx (ii)$	
	$\frac{\pi}{2}$	
	$2I = \int_{0}^{2} \log(\sin x \cos x) dx$	1
	$2I = \int_{0}^{1} \log(\sin x \cos x) dx$	1
	U	
	$2I = -\pi \log 2$	2
	$I = -\frac{\pi}{2}\log 2$	
25	<u>Z</u>	2
35	Find drs of required line where a=-4, b= 4 & c=-1	1
	Equation of required line in vector equation & cartesian equations: $\frac{x-1}{-4} = \frac{y-1}{4} = \frac{z-1}{-1}$	1
	$\& \vec{r} = (\hat{i} + \hat{j} + \hat{k}) + \lambda(-4\hat{i} + 4\hat{j} - \hat{k})$	1
	And find angle $\theta = \cos^{-1} \frac{24}{\sqrt{609}}$	2
	<u>SECTION E</u>	
36	(i) $(300 - 3x) \& (80 + x)$ (ii) $2^{-2} = 50 = 24000$	1
	(ii) $-3x^2 + 60x + 24000$ (iii) 10	1
	OR	2
	11 th July	
37	(i) Direction ratios of $OA = 1,0,0$	1
	(ii) the Equation of diagonal $OB' = \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$	1
	(iiI) Equation of Line is $O'B' = \frac{x}{1} = \frac{y}{2} = \frac{z-3}{0}$	2
	1 2 0	
38	(i) $\frac{1}{35}$ (ii) $\frac{2}{7}$	2+2
	35 7	

SAMPLE QUESTION PAPER -02, 2024-25 BLUEPRINT CLASS: XII MATHEMATICS (Code-041)

UNITS	NAME OF CHAPTERS	SECTION A (Objective Type) (1 MARK EACH)		SECTION B (VSA) (2 MARKS	SECTION C (SA) (3 MARKS	SECTION D (LA) (5 MARKS	SECTION E (CBQ) (4 MARKS EACH)	TOTAL
UNIT-I (Relations & Functions)		MCQ	ARQ	EACH)	EACH)	EACH)		
(Relations &	RELATIONS AND FUNCTIONS			2(1)		5*(1)		8(3)
Functions)	INVERSE TRIGONOMETRY FUNCTION		1(1)					
UNIT-II (Algebra)	MATRICES	2(2)						10/0
(Algebra)	DETERMINANT	3(3)				5(1)		10(6)
UNIT-III (calculus)	CONTINUITY & DIFFERENTIABILITY	2(2)		2*(1)	3(1)			
	APPLICATION OF DERIVATIVE	2(2)					4*(1)	35(17)
	INTEGRATION	2(2)		2(1)	3*(1)	5*(1)		
	APPLICATION OF INTEGRATION			2*(1)	3(1)			
	DIFFERENTIAL EQUATION	2(2)			3*(1)			
UNIT-IV	VECTORS	1(1)		2(1)				
(Vectors & 3D)	THREE-DIMENSIONAL GEOMETRY	1(1)	1(1)			5(1)	4*(1)	14(6)
UNIT-V (LPP)	LPP	2(2)			3(1)			5(3)
UNIT-VI (Probability)	PROBABILITY	1(1)			3*(1)		4(1)	8(3)
	TOTAL	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

(*) represents question with internal choice. Marks are mentioned outside brackets. No. of questions - within the brackets.

SAMPLE QUESTION PAPER-02 2024-25

<u>2024-25</u> CLASS: XII

SUBJECT: -MATHEMATICS (041)

Time: - 3 Hours

Max Marks: - 80

General Instructions:

Read the following instructions very carefully and strictly follow them:(i) This Question paper contains 38 questions. All questions are compulsory.(ii) This Question paper is divided into five Sections - A, B, C, D and E.

(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.

(iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.

(v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.

(vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.

(vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each. (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.

Q.	SECTION – A	Marks
No	(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the	
	correct option (Question 1 - Question 18):	
1	If $\begin{bmatrix} x - y & 2 \\ x & 5 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$, then value of y is	1
	(a) 1 (b) 3 (c) 2 (d) 5	
2	(a) 1 (b) 3 (c) 2 (d) 5 The A = $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then A ² is equal to	1
	(a) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
3	Let A be a non-singular square matrix of order 3×3 and $ adj A = 64$ then $ A $ is equal to (a) ± 64 (b) ± 16 (c) ± 8 (d) none of the these	1
4	If $A = \begin{vmatrix} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{vmatrix}$, then A^{-1} exists, if	1
5	(a) $\lambda = 2$ (b) $\lambda \neq 2$ (c) $\lambda \neq -2$ (d) None of these If A is a square matrix of order 3 × 3 such that $ A = 2$, then the value of $ adj(adj A) $ is	1
5	(a)-16 (b) 16 (c) 0 (d) 2	
6	The function $y = x - 5 $ is	1
0	(a) Continuous at $x = 5$	1
	(a) Continuous at $x = 5$ (b) Differentiable at $x = 5$	
	(c) Both continuous and differentiable at $x = 5$	
	(d) Neither continuous nor differentiable at $x = 5$	
7	Derivative of sec $(\tan^{-1}x)$ w.r.t. x is	1
	(a) $\frac{x}{\sqrt{1+x^2}}$ (b) $\frac{x}{1+x^2}$ (c) $x\sqrt{1+x^2}$ (d) $\frac{1}{\sqrt{1+x^2}}$	
8	The function $f(x)=x^x$ is decreasing in the interval:	
	(a) $(0, e)$ (b) $(0, \frac{1}{e})$ (c) $(0, 1)$ (d) none of these	

9	For the function $y=x^3+21$, the value of x, when y increases 75 times as fast as x, is (a) ± 3 (b) $\pm 5\sqrt{3}$ (c) ± 5 (d)none of these	1
10	If $\int (\sin 2x - \cos 2x) dx = \frac{-1}{\sqrt{2}} \sin(2x - a) + c$, then $a =$ (a) $\frac{\pi}{2}$ (b) $-\frac{\pi}{2}$ (c) $\frac{5\pi}{2}$ (d) None of these	1
11	(a) $\frac{\pi}{4}$ (b) $-\frac{\pi}{4}$ (c) $\frac{5\pi}{4}$ (d) None of these $\int \frac{e^{tan^{-1}x}}{1+x^2} dx =$ $\tan^{-1}x$	1
	(a) $\frac{e^{tan^{-1}x}}{1+x^2} + c$ (b) $x^2 e^{tan^{-1}x} + c$ (c) $e^{tan^{-1}x} + c$ (d) $\frac{e^{tan^{-1}x}}{x} + c$	
12	The order of the differential equation $2x^3 \frac{d^2y}{dx^2} - 36 \frac{dy}{dx} + y = 0$ is	1
	(a) 2 (b) 1 (c) 0 (d) not defined	
13	(a) 2 (b) 1 (c) 0 (d) not defined The general solution of $\frac{dy}{dx} + y \tan x = \sec x$ is	1
	(c) $\tan x = y \tan x + C$ (d) $x \sec x = \tan y + C$	
14	(a) $y \sec x = \tan x + C$ (b) $y \tan x = \sec x + C$ (c) $\tan x = y \tan x + C$ (d) $x \sec x = \tan y + C$ If $\vec{a} = 7i + j + 4k$ and $\vec{b} = 2i - 6j + 3k$, then the projection of \vec{a} on \vec{b} is	1
	$(a)\frac{11}{7}$ $(b)\frac{8}{7}$ $(c)\frac{-11}{7}$ (d) None of these	
15	The equation of line passing through the point (-2,4, -5) and parallel to the line $\frac{x+3}{3}$ =	1
	$\frac{y-4}{5} = \frac{z+8}{6}$ is	
	(a) $\frac{x-2}{3} = \frac{y-4}{5} = \frac{z-5}{6}$ (b) $\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$	
	(c) $\frac{x+3}{-2} = \frac{y-4}{4} = \frac{z+8}{-5}$ (d) $\frac{x+2}{-2} = \frac{y-4}{4} = \frac{z+5}{-5}$	
16	 A linear programming problem is one that is concerned with (a) finding the optimal value (maximum or minimum) of a linear function of several variables. (b) finding the limiting values of a linear function of several variables (c) finding the lower limit of a linear function of several variables 	1
17	(d) finding the upper limits of a linear function of several variables. Inequation $y_{-} x < 0$ represents	1
1/	Inequation $y - x \le 0$ represents (a) The half plane that contains the positive x-axis	L
	(b) Closed half plane above the line $y = x$, which contains positive y-axis	
	(c) Half plane that contains the negative x-axis	
10	(d) None of these	
18	If A and B are two events such that: $P(A) = 0.40$, $P(B) = 0.35$ and $P(A \cup B) = 0.55$, find $P(A \cup B)$	1
	P(B/A) is (a) $\frac{1}{2}$ (b) $\frac{4}{7}$ (c) $\frac{2}{7}$ (d) None of the above	

	ASSERTION-REASON BASED QUESTIONS	
	(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each.	
St	atements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the answer from the options (A), (B), (C) and (D) as given below.)	correct
(a)	Both A and R are true and R is the correct explanation of A.	
(b)	Both A and R are true but R is not the correct explanation of A.	
(c)	A is true but R is false.	
(d) 19	A is false but R is true. Assertion (A): The principal value branch of function $\cos^{-1} x$ is $[0, \pi]$	1
_,	Reason (R): The value of $\cos^{-1}\left(\cos\frac{3\pi}{2}\right)$ is $\frac{3\pi}{2}$.	
20	Assertion (A): Vector equation of a line which passes through two points whose position	1
	vector are \vec{a} and \vec{b} is $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$.	
	Reason (R): Vector equation of a line passing through the given point whose position	
	vector is \vec{a} and parallel to a given vector \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$.	
	SECTION B	
	(This section comprises of 5 very short answer (VSA) type questions of 2 marks each	
21	If the relation R is defined on a set A of people living in a Town by aRb , if and only if b lives within one kilometre from a , then check if the relation is reflexive, symmetric.	2
22	Find Derivative of $f(x) = tan^{-1}(\sqrt{1+x^2} + x)$ with respect to x.	2
	OR	
	$If f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, x \neq 5\\ k, x = 5 \end{cases}$ is continuous at x = 5, find the value of k. Integrate $\frac{2x}{x^2 + 3x + 2}$.	
23	Integrate $\frac{2x}{x^2+3x+2}$.	2
24	Find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and line $x + y = 2$.	2
	OR	
	Find the area of the ellipse $x^2 + 9y^2 = 36$ using integration.	
25	If \vec{a} and \vec{b} are vectors such that $ \vec{a} = 2$, $ \vec{b} = 3$ and $\vec{a} \cdot \vec{b} = 4$ then find $ \vec{a} - \vec{b} $.	2
	SECTION C	
	(This section comprises of 6 short answer (SA) type questions of 3 marks each.)	
26	If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ and $x \neq y$, prove that $\frac{dy}{dx} = -\frac{1}{(x+1)^2}$.	3
27	Integrate $\sqrt{x^2 + 4x + 6}$	3
	OR	
	Prove that $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log(\sqrt{2} + 1)$	
28	Find the area of the minor segment of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$.	3
	Solve the differential equation $(\tan^{-1} y - x)dy = (1 + y^2)dx$	
29	OR	3
	Solve the differential equation $\frac{dy}{dx} + 3y = e^{-2x}$	1

30	Solve the following problem graphically:	3						
	Maximize $Z = 3x+9y$ subject to $x+3y \le 60, x + y \ge 10, x \le y, x \ge 0, y \ge 0$	5						
31	Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find $E(X)$. OR	3						
	Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively.							
	If both try to solve the problem independently then find the probability that $\frac{1}{3}$ respectively.							
	(a) The problem is solved							
	(b) Exactly one of them solve the problem.							
	SECTION D							
	(This section comprises of 4 long answer (LA) type questions of 5 marks each)	-						
32	Let $A = R - \left\{\frac{3}{2}\right\}$, $B = R - \left\{\frac{3}{2}\right\}$. Let $f : A \to B$ be defined by $f(x) = \frac{3x-2}{2x-3} \forall x \in A$. Then	5						
	show that f is bijective.							
	OR							
	Let n be a fixed positive integer. Define a relation R in Z as follows: $\forall a, b \in Z$, aRb if and only if a his divisible by 4. Show that P is an equivalence relation							
33	only if a – b is divisible by 4. Show that R is an equivalence relation. $\begin{bmatrix} 1 & -2 & 0 \end{bmatrix} \begin{bmatrix} 7 & 2 & -6 \end{bmatrix}$	5						
55	Find the product $\begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix}$ and using it solve the system of equations	5						
	x - 2y = 10, 2x + y + 3z = 8, -2y + z = 7.							
34	$ \begin{array}{rcl} 10 & -2 & 11 & 1 - 4 & 2 & 5 \\ x - 2y &= 10, & 2x + y + 3z &= 8, & -2y + z &= 7. \\ \end{array} $ Evaluate: $I = \int \frac{1 - x^2}{x(1 - 2x)} dx$	5						
	OR							
35		5						
35	OR Evaluate: $\int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2 x) dx.$ Find the shortest distance between $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}.$ SECTION E	5						
	Evaluate: $\int_{0}^{\frac{\pi}{2}} (2\log\sin x - \log\sin 2x) dx.$ Find the shortest distance between $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}.$	he first						
(Th	Evaluate: $\int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2 x) dx.$ Find the shortest distance between $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}.$ SECTION E his section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The wo case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third	he first						
(Th tv	Evaluate: $\int_{0}^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2 x) dx.$ Find the shortest distance between $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}.$ SECTION E and section comprises of 3 case-study/passage-based questions of 4 marks each with subparts. The variable study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third study question has two subparts of 2 marks each) A student of class XII wants to construct a rectangular tank for his house that can hold 80 cubic feet of water. The top of the tank is open. The width of tank will be 5 ft but length and heights are variables. Building the tank cost Rs 20 per sq. ft for the base and Rs. 10 per	he first						

	(iii) Find the least cost of tank?	2
	OR	
	Find the total cost building the wall of tank.	
37	If a ₁ , b ₁ , c ₁ and a ₂ , b ₂ , c ₂ are direction ratios of two lines say L ₁ and L ₂ respectively. Also, If l ₁ , m ₁ , n ₁ and l ₂ , m ₂ , n ₂ are direction cosines of two lines say L ₁ and L ₂ respectively. Based on the above information, answer the following questions (a) What is the relation between the direction cosines of lines L1 and L ₂ , if L ₁ is perpendicular to L ₂ ? (b) What is the relation between the direction cosines of lines L1 and L ₂ , if L ₁ is parallel to L ₂ ? (c) Find the coordinates of the foot of the perpendicular drawn from the point A(1, 2, 1) to the line joining B(1, 4, 6) and C(5, 4, 4)? OR Find the direction ratios of the line which is perpendicular to the lines with direction ratios	1 1 2
	proportional to 4, -3, 5 and 3, 4,5.	
38	In an office 3 employees Vinay, Sonia and Iqbal process incoming copies of a certain form. Vinay process 50 % of the forms. Sonia processes 20% and Iqbal the remaining 30% of the forms. Vinay has an error rate of 0.06. Sonia has an error rate of 0.04 and Iqbal has an error rate of 0.03	
	(i) What is the conditional probability that Sonia processes the form and an error is committed in processing?(ii) What is the total probability of committing an error in processing the form?	2 2

SAMPLE QUESTION PAPER- 02 2024-25 CLASS: XII SUBJECT: MATHEMATICS (041)

MARKING SCHEME

Q. No				Q <u>SEC</u>	Question CTION – A				Marks
	1	(a)	6	(a)	11		16		20
	2	(a) (d)	7	(a) (a)	11	(c) (a)	16 17	(a) (b)	
	3	(c)	8	(b)	13	(a)	18	(a)	

	4	(d)	9	(c)	14	(d)	19	(c)				
	5	(b)	10	(b)	15	(b)	20	(a)				
				SE	CTION – B							
21	To show R								1			
	To show R								1			
22	f(x) = ta		· · · ·						1			
	Simplest form of $f(x) = \frac{\pi}{4} + \frac{1}{2} \tan^{-1} x$											
	$f'(x) = \frac{1}{2(1+x^2)}.$											
23	$\frac{\int \frac{2x}{x^2 + 3x + 2}}{\frac{2x}{(x+1)(x+2)}} =$	$dx = \int \frac{dx}{dx} dx$	$\frac{2x}{dx}$	x,					1⁄2			
	x^2+3x+2 2x	$=\frac{-2}{-2}$ +	$\frac{x+1}{4}$						1⁄2			
	(x+1)(x+2)	x+1'	x+2'						1			
		$\int \left[\frac{-2}{x+1} + \frac{4}{x+2}\right] dx = -2\log(x+1) + 4\log(x+2) + c.$										
24	For correct	U	$\Lambda roo - \pi$	2					1			
	For finding	g Shaded	Area = π –	- 2.	OR				1			
	For correct	Figure							1			
	For finding								1			
25	$\left \left \vec{a}-\vec{b}\right ^2=$	$(\vec{a} - \vec{b})$	$= \vec{a} ^2 + $	$\left \vec{b}\right ^2 - 2\vec{a}.\vec{b}$	= 4 + 9 - 8	= 5.			1+1/2			
	$\left \vec{a} - \vec{b} \right = 1$	()							1/2			
				<u>S</u>]	ECTION C							
26				$x\sqrt{1+y}$	$\frac{\text{ECTION C}}{y} = -y\sqrt{1+y}$	x			1			
	-	-	nplification	l					1			
	Correct der	rivative							1			
27									1+1/2			
	$\int \sqrt{x^2+4}$	$\frac{1}{x+6}dx$	$x = \int \sqrt{x}$	$(+2)^2 + 2 d$	x							
	J		J									
	x+2	ar ² 1 ar		$x + 2 + \sqrt{x^2}$	2 + 4m + 6				1+1/2			
	4		+ 0 + 10g	$x + z + \sqrt{x}$	+4x+0				-			
28	For correct		. (π+	2) 2					$\frac{1}{2}$			
	For finding		*	$-a^2$.					2			
29	For correct			. <u>1</u>	$-tan^{-1}v$				1			
	For correct	solution	$x = \tan^{-1}$	$y - 1 + ce^{-1}$	OR							
	For correct				~				2			
	For correct			$c^{2}+c$.					1			
									2			
30	Correct fig		sible Regio	n					1			
	Shading CO		sible Regio	11					1			

	For Maximum value of Z.	1
31	For correct table	2
	For correct $E(x) = \frac{14}{3}$	1
	OR	
		1+1/21
	(a) $P(Problem \ will \ be \ solved) = \frac{2}{3}$	+1/2
	(b) $P(\text{Exactly one of them solve the problem}) = \frac{1}{2}$	
	SECTION D	
32	For ONE -ONE	2.5
	For Onto:-	2.5
	OR	
	Reflexivity:	1.5
	R is reflexive.	
	Symmetry:	1.5
	R is symmetric	
	Transitivity:	2
	R is transitive	
33	∴R is Equivalence Relation.	1
33	For correct multiplication of matrices For correct inverse of coefficient matrix	$1 \\ 2$
		$\frac{2}{2}$
34	For correct solution $(x = 4, y = -3, z = 1)$.	2
54	$\frac{1-x^2}{x(1-2x)}$ is an improper rational function, which can be rewritten as	
	$\frac{1-x^2}{x(1-2x)} = \frac{1}{2} + \frac{-\frac{x}{2}+1}{x(1-2x)}$	
	$\frac{-\frac{x}{2}+1}{x(1-2x)} = \frac{A}{x} + \frac{B}{(1-2x)}$	
	x-2=A(1-2x)+Bx	
	On comparing of coefficient of x and constant, we get $A=-2$ and $B=-3$	
	$\frac{-\frac{x}{2}+1}{x(1-2x)} = \frac{-2}{x} + \frac{-3}{(1-2x)}$	
	$\int \frac{\frac{-x}{2}+1}{x(1-2x)} dx = \int \frac{-2}{x} dx + \int \frac{-3}{(1-2x)} dx$	
	$I = -2 \log x - 3 \frac{\log(1-2x)}{-2} + c$	
	$I = -2 \log x + \frac{3}{2} \log(1 - 2x) + c$	
	$I = \frac{x}{2} - 2\log x + \frac{3}{2}\log(1 - 2x) + c$	

	OR	
	$\int \frac{\pi}{2}$	
	$\int_{0}^{\frac{\pi}{2}} (2\log\sin x - \log\sin 2x) dx$	
	$I = \int_0^{\frac{\pi}{2}} \log\left(\frac{\sin^2 x}{2\sin x \cos x}\right) dx$	
	$I = \int_0^{\frac{\pi}{2}} \log\left(\frac{\tan x}{2}\right) dx$	
	$I = \int_0^{\frac{\pi}{2}} \log\left(\frac{\tan\left(\frac{\pi}{2} - x\right)}{2}\right) dx = I = \int_0^{\frac{\pi}{2}} \log\left(\frac{\cot x}{2}\right) dx$	
	$2I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{\tan x}{2}\right) \left(\frac{\cot x}{2}\right) dx = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{4}\right) dx$	
	$I = \frac{\pi}{4} \log\left(\frac{\pi}{4}\right).$	
35	Correct formula	1
	Correct Answer	4
26	<u>SECTION E</u>	1
36	(a) $C(h) = 100 h + 320 + \frac{1600}{h}$	1 1
	(b) For $h = 4$	2
	(c) 1120	~
	OR	
	720	
37	(a) $l_1 l_2 + m_1 m_2 + n_1 n_2 = 1$	1
	(b) $\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$	
	(c) (3, 4, 5)	2
	OR	
	The direction ratios of the line perpendicular to the lines with direction ratios proportional to 4, -3, 5 and 3, 4,5 are -5, -7, 7.	
38	(i) 0.04	2
	(i) 0.045	2
	(ii) 0.045	2

SAMPLE PAPER 03 (2024-25)

BLUE PRINT

CLASS- XII

SUBJECT- MATHEMATICS (041)

	CLASS- AII		Maximum marks: - 80							
	Time Allowed: -	3:00 Hours	1		Maxi		s: - 80			
S.NO	Name of Chapter	(MCQs & Assertion- Reason based) (1 mark)	VSA (2 Marks questions)	SA (3 Marks questions)	LA 5 Marks questions	(Case study- based question) (4 Marks)	TOTAL	UNIT WISE TOTAL		
1	Relations and Functions	1(1)			1* (5)		2 (6)			
2	Inverse Trigonometric Functions		1* (2)				1 (2)	3 (8)		
3	Matrices	1(1)	1(2)				2(3)			
4	Determinants	1 (1)+ 1(AS- R)(1)			1 (5)		3 (7)	6 (10)		
5	Continuity and Differentiability	2 (2)	1*(2)	1 (3)			4 (7)			
6	Applications of Derivatives	2(2)	1 (2)			1 (4) (1+1+2)	4(8)	-		
7	Integrals	2(2)	1 (2)	1 (3) +1*(3)			5(10)	16 (35)		
8	Applications of Integrals				1 (5)		1 (5)			
9	Differential equations	2 (2)		1* (3)			3 (5)			
10	Vector Algebra	2(2)				1 (4) (1+1+2*)	3 (6)			
11	Three- Dimensional Geometry	2(2) + 1(AS- R)(1)			1* (5)		4 (8)	7 (14)		
12	Linear Programming	2 (2)		1(3)			3 (5)			

P a g e 21 | 66

13	Probability	1 (1)		1* (3)		1 (4) (1+1+2*)	3 (8)	6 (13)
ΤΟΤΑ	AL	20 (20)	5 (10)	6 (18)	4 (20)	3 (12)	38(80)	38 (80)

No. of questions (Marks) * Internal Choice Questions, AS-R = Assertion-Reason

SAMPLE QUESTION PAPER-03 (2024-25) SUBJECT: MATHEMATICS (041)

CLASS: XII

Max Marks: - 80

Time: - 3 Hours General Instructions:

Read the following instructions very carefully and strictly follow them:

(i) This Question paper contains 38 questions. All questions are compulsory.

(ii)This Question paper is divided into five Sections - A, B, C, D and E.

(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no.

19 and 20 are Assertion-Reason based questions of 1 mark each.

(iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.

(v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.

(vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.

(vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.

(viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.

Q	SECTION A	Ms						
No	(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the							
	correct option (Question 1 - Question 18):							
1	Set A has 3 elements and Set B has 5 elements. Then the number of injective functions that	1						
	can be defined from set A to set B are							
	(a) 15 (b) 64 (c) 60 (d) 20							
2	The degree of the differential equation: $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x \sin\left(\frac{d^2y}{dx^2}\right)$							
	(a)1 (b)2 (c)3 (d)Not defined							
3	The unit vector perpendicular to the vectors $\hat{i} + \hat{j}$ and $\hat{i} - \hat{j}$ forming a right-handed	1						
	system is :							
	(a) \hat{k} (b) $-\hat{k}$ (c) $\frac{\hat{k}}{2}$ (d) $-\frac{\hat{k}}{2}$							
4	The point which does not lie in the half plane $x - 2y - 1 \le 0$ is	1						
	(a) $(1,2)$ (b) $(4,1)$ (c) $(0,2)$ (d) $(-3,2)$							

5	The angle between the lines passing through the points of first line $(6,7,8)$, $(4,3,4)$ and points of second line $(-2, -2, 1)$, $(0,2,5)$ is	1
	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) 0° (d) $\frac{\pi}{6}$	
6	$\int_{0}^{\frac{1}{\sqrt{2}}} \frac{dx}{\sqrt{2-x^2}}$ is equal to	1
	$\frac{(a)\frac{\pi}{3}}{(b)\frac{\pi}{6}} \qquad (b)\frac{\pi}{6} \qquad (c)\frac{\pi}{2} \qquad (d)\frac{\pi}{4}$	
7	If the matrix A is both symmetric and skew symmetric, then	1
	(a) A is a diagonal matrix (b) A is a zero matrix (c) A is a scalar matrix (d) None of these	
8	If P(B)= $\frac{3}{5}$, $P\left(\frac{A}{B}\right) = \frac{1}{2}$ and $P(AUB) = \frac{4}{5}$, then P($A \cap B$)'=	1
	(a) $3/10$ (b) $7/10$ (c) $2/5$ (d) None of these	
9	The difference between Max. Z and Min. Z, where $Z = 5x - 3y$ and corner points of feasible	1
	solution region are (5,5), (0,10), (0,20), (15,15) :	
	(a) - 30 (b) 10 (c) 90 (d) 30	
10	The solution of the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ satisfying the condition is	1
	(a) $y = x log x + C x$ (b) $y = log x + x + C$	
	(c) $y = x \log x + x^2 + C$ (d) $y = x e^{x-1} + C$	
11	Find the area of a parallelogram whose diagonals are given by $2\hat{i}$ and $5\hat{j}$	1
	(a) 5 (b) 10 (c)20 (d)2.5	
12	(a) 5 (b) 10 (c)20 (d)2.5 If lines $\frac{x-2}{3} = \frac{y-4}{-8} = \frac{z-6}{3k}$ and $\frac{x-1}{k} = \frac{y-3}{3} = \frac{z-5}{5}$ are mutually perpendicular then k is equal to (a) $\frac{-3}{4}$ (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ (d) $\frac{-4}{3}$ The point(s) on the curve $y=x^2$, at which y- coordinate is changing 5 times as fast as x-	1
13	The point(s) on the curve $y=x^2$, at which y- coordinate is changing 5 times as fast as x- coordinate is/are	1
14	$(a)(5,25) \qquad (b)\left(\frac{5}{2},\frac{25}{4}\right) \qquad (c)\left(\frac{3}{2},\frac{9}{4}\right) \qquad (d)(3,9)$ The value of $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$ is $(b) 2\sqrt{\sin x} dx = (b) 2$	1
1.5	$(a) 2\sqrt{\tan x} + C \qquad (b) 2\sqrt{\sin x} + C \qquad (c) 2\sqrt{\sec x} + C \qquad (d) 2\tan x + C$	
15	The equation of line passing through $(-7, 8)$ and $(5, 2)$ is	1
	(a) $x + 2y - 9 = 0$ (b) $5x - y - 27 = 0$ (c) $x - 2y + 9 = 0$ (d) $5x + y - 27 = 0$	
16	The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ decreasing is(a) $[-2, -1]$ (b) $[-1, \infty]$ (c) $[-\infty, -2]$ (d) $[-1, 1]$	1
17	If $f(x) = \log(\log x)$, then derivative of $f(x)$ at $x = e$ is: (a) 1 (b) e (c) 0 (d) $1/e$	1

18	If $f(x) = \begin{cases} \frac{\sin x}{2x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at $x = 0$, then the value of k is :	1
	(a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) 0	
	ASSERTION-REASON BASED QUESTIONS	
state answ (a) I (b) I ® A	estion numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two ments are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct ver from the options (A), (B), (C) and (D) as given below.) Both A and R are true and R is the correct explanation of A. Both A and R are true but R is not the correct explanation of A. is true but R is false.	t
19	Assertion (A) : If a line makes an angle of 30° , 60° , 90° with the positive direction of	1
	x, y, z axes respectively, then its direction cosines are $<\frac{\sqrt{3}}{2}, \frac{1}{2}, 0>$.	
	Reason (R) : Angle between the two lines $\frac{x-2}{3} = \frac{y+1}{-2}$, $z = 2$ and $\frac{x-1}{1} = \frac{y+3}{3} = \frac{z+5}{3}$ is 90° .	
20	Assertion(A): The matrix $\begin{bmatrix} 8 & -1 & -1 \\ 3 & 1 & 2 \\ 1 & 4 & 7 \end{bmatrix}$ is singular.	1
	Reason (R) : The value of determinant of matrix A is zero.	
	SECTION B	
21	(This section comprises of 5 very short answer (VSA) type questions of 2 marks each.)	2
	Find: $\int \frac{xe^x - e^x}{x^2} dx$	2
22	Find The value of $\cos^{-1}(\cos\frac{5\pi}{3}) + \sin^{-1}(\sin\frac{5\pi}{3})$.	2
	OR	
	Find the domain of $cos^{-1}[x]$. Where [x] denotes the greatest integer function.	
23	On the occasion of Deepawali a child lightens the rocket which is moving in a straight line in such a way that its distance in meter from a fixed point on the line after t second is given by $3t^3 + 2t + 7$. Find the velocity at the end of 5 seconds.	2
24	$\left(\begin{array}{c} \frac{x^2}{2}, & 0 \le x < 1\end{array}\right)$	2
	If the function $f(x) = \begin{cases} \frac{x^2}{a}, & 0 \le x < 1\\ -1, & 1 \le x < \sqrt{2} \text{ is continuous in}[0,\infty), \text{ then find the value}\\ \frac{2b^2 - 4b}{x^2}, & \sqrt{2} \le x < \infty \end{cases}$	
	of a and b	
	OR	
	Differentiate $log_7(log_e x)$ with respect to x	
25	If $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ and $A^2 = kA$ then write the value of k	2

	SECTION C	
	(This section comprises of 6 short answer type questions (SA) of 3 marks each)	
26	Find the general solution of differential equation: $(x + 2y^3) \frac{dy}{dx} = y$	3
	OR	
	Solve the differential equation: $x dy - y dx = \sqrt{x^2 - y^2} dx$.	
27	A die is thrown twice and the sum of the numbers appearing is observed to be 6. what is the	3
21	conditional probability that the number 4 has appeared at least once.	5
28	Maximize $Z=8x+9y$ subject to the constraints given below:	3
29	$2x+3y \le 6, \ 3x - 2y \le 6, \ y \le 1 \text{ and } x, y \ge 0$ Evaluate $\int \frac{x}{\sqrt{x+1}} dx$ OR	3
	Evaluate: $\int \frac{dx}{\sqrt{3x^2 + 6x + 12}}$	
	$\sqrt{3x^2+6x+12}$	
30	If $x = ae^{\theta}(sin\theta + \cos\theta)$ and $y = ae^{\theta}(sin\theta - \cos\theta)$, prove that $\frac{dy}{dx} = \frac{x+y}{x-y}$.	3
31	Evaluate $\int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} dx$	3
	<i>y i i c c c c c c c c c c</i>	
	OR	
	Evaluate $\int_0^{\pi} x \log \sin x dx$	
	SECTION D	
	(This section comprises of 4 long answer (LA) type questions of 5 marks each	
32	Find the area of the region included between the parabola $2y = 3x^2$ and the line	5
	x - 2y + 10 = 0	
33		5
	An insect is crawling along the line $\vec{r} = 6\hat{\imath} + 2\hat{\jmath} + 2\hat{k} + \lambda(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$ and another insect is	
	crawling along the line $\vec{r} = -4\hat{\imath} - \hat{k} + \mu(3\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$. At what points on the lines should	
	they reach so that the distance between them is the shortest? Find the shortest possible	
	distance between them.	
	OR	
	The equations of motion of a nonlectary $x = 2t$ $x = -4t$ = -4ttary the time the	
	The equations of motion of a rocket are : $x = 2t$, $y = -4t$, $z = 4t$, where the time t is given in seconds, and the appricipates of a maying point in km. What is the path of the rocket? At	
	in seconds, and the coordinates of a moving point in km. What is the path of the rocket? At what distances will the rocket be from the starting point $O(0, 0, 0)$ and from the following	
	line in 10 seconds? $\vec{r} = 20\hat{\imath} - 10\hat{\jmath} + 40\hat{k} + \mu(10\hat{\imath} - 20\hat{\jmath} + 10\hat{k})$.	
34	Prove that the function $f(x) = \frac{x}{10}$ such that $f(D) = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$ is the function $f(x) = \frac{x}{10}$ such that $f(D) = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$	5
57	Prove that the function $f(x) = \frac{x}{x^2+1}$ such that $f: \mathbb{R} \to [\frac{-1}{2}, \frac{1}{2}]$ is one- one and onto function.	
	Find the images of 3 and 4 and pre-image of -1.	
	OR	
	Show that the relation R defined in the set of natural numbers is defined by (a,b)	
	$\mathbf{D}(a,d)$ if $1 + 1 = 1 + 1$ Show that D is and against a point of the again between the second s	1
	R(c,d) if $\frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$. Show that R is and equivalence relation . Also find the equivalence	

35	If A= $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and B= $\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$, find AB Hence, solve the system of equations: $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 4$, $\frac{2}{x} + \frac{1}{y} - \frac{3}{z} = 0$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2$	5
	A - 2 -5 a a -5 -5 0 5 , a A B Helice, -5 -5 -5 -5 -5 -5 -5	
	solve the system of equations: $\frac{1}{1} - \frac{1}{1} + \frac{1}{1} - \frac{2}{1} + \frac{1}{2} + \frac{3}{1} - 0$ and $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} - \frac{2}{1} - \frac{3}{1} - 0$	
	solve the system of equations: $+$	
	SECTION E	
	(This section comprises of 3 case-study/passage-based questions of 4 marks each with subp	
	The first two case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respective	vely.
26	The third case study question has two subparts of 2 marks each)	1
36	Solar Panels have to be installed carefully so that the tilt of the roof, and the direction to the	1
	sun, produce the largest possible electrical power in the solar panels. A surveyor uses his	$\frac{1}{2}$
	instrument to determine the coordinates of the four corners of a roof where solar panels are to	2
	be mounted. In the picture, suppose the points are labelled the roof corner nearest to the camera in antice of matters $P_{1}(21, 24, 3)$, $P_{2}(21, 24, 4)$, $P_{3}(21, 24, 4)$, $P_{4}(21, 24, 4)$, P_{4}	
	in units of meters P_1 (6,8,4), P_2 (21,8,4), P_3 (21,16,10) and P_4 (6,16,10).	
	(i) What are the components to the two edge vectors defined by $\vec{A} = PV$ of $P_2 - PV$ of P_1 and	
	position vector $\vec{B} = PV$ of $P_4 - PV$ of P_1 ? (where PV stands for position vector)	
	(ii) What are the magnitudes of the vectors \vec{A} and \vec{B} .	
	(iii) What are the components to the vector \vec{N} (where $ \vec{N} = 150$), perpendicular to \vec{A} and \vec{B}	
	and the surface of the roof?	
	OR	
	The sun is located along the unit vector $\vec{S} = \frac{1}{2}\hat{\imath} - \frac{6}{7}\hat{\jmath} + \frac{1}{7}\hat{k}$. If the flow of solar energy	
	is given by the vector $\vec{F} = 910 \ \vec{S}$ in units of watts/meter ² , what is the dot product of vectors	
	\vec{F} with \vec{N} .	
37	$P(x) = -5x^2 + 125x + 37500$ is the total profit	1
	function of a company, where x is the production	1
	of the company.	2
	Based on given information, answer the following questions:	
	(i) What will be the production when the profit is maximum?	
	OR	
	What will be the maximum profit?	
	(ii) When the production is 2 units, what will be the profit of the company	
	(iii) What will be production of the company when the profit is Rs. 38250	
	(in) what will be production of the company when the profit is its. 50250	

Aditya, Bhaskar & Ravi graduated from IIM and the chances of being selected as the, manager of a firm is 4:1:2 respectively. The respective probability for them to introduce a change in marketing strategy are 0.3, 0.8 & 0.5 respectively. Let E1, E2 & E3 be the event that Aditya, Bhaskar & Ravi be selected and A be the event change does takes place. Based on above information, answer the following:
(1) Write the probability of selection of Aditya.
(2) Write the probability that the change took place due to appointment of Bhaskar.

			Mai King	scheme 2024	-23		
		Class: 2	XII	Subject	t: Mathemati	ics	
		Se	ction: A (MC	CQs of 1 Mar	k each)		
1	(c)	6	(c)	11	(b)	16	(a)
2	(d)	7	(b)	12	(b)	17	(d)
3	(a)	8	(b)	13	(b)	18	(b)
4	(b)	9	(c)	14	(a)	19	(b)
5	(c)	10	(a)	15	(a)	20	(a)
			ection: B (VS	A of 2 Mark	s each)		
21		$\frac{dx}{dx} = \int e^x ($					1
		$=\frac{1}{x}e^{x}$	$(\frac{\pi}{3}) + sin^{-1}(s)$				1
22	$= cos^{-2}$	$^{1}(\cos(2\pi-\frac{5}{2}))$	$(\frac{\pi}{3}) + sin^{-1}(s)$	$in(2\pi - \frac{5\pi}{3})$			1⁄2
	$= cos^{-1}$	$(\cos(\frac{\pi}{3}) + s)$	$\ln^{-1}\left(-\sin\left(\frac{\pi}{3}\right)\right)$)			1
	$=\frac{\pi}{3}-\frac{\pi}{3}$	$\frac{t}{3} = 0$					1⁄2
		0)R				
		$-1 \leq [x] \leq$	$1 \Rightarrow -1 \leq 2$	$x < 2 \Rightarrow x e$	€[−1,2) .		1+1
23	$y = 3t^2$	$^{3} + 2t + 7$					1⁄2
	Velocit	y, v = $\frac{dy}{dt}$ = 98	$t^{2} + 2$				1
		uı	nds 227 metr	e/sec			1⁄2
24	Since f((x) is continu	ous in [0,∞),	the			1
	$\lim_{x \to 1} \frac{x^2}{a}$	=-1					
	.⇒ a=-1	l					
•	1						

Sample Paper 03 Marking scheme 2024-25

Page 27 | 66

2 2

	2h2 Ab	
	And $\lim_{x \to \sqrt{2}} \frac{2b^2 - 4b}{x^2} = -1$	
	$\Rightarrow \lim_{x \to \sqrt{2}} \frac{2b^2 - 4b}{2} = -1$	
	$x \rightarrow \sqrt{2} 2$ $\Rightarrow 2b^2 - 4b = -2$	1
	$ \Rightarrow 2b^2 - 4b = -2 \Rightarrow 2b^2 - 4b + 2=0 $	
	$ \Rightarrow 2b + b + 2 = 0 $ $ \Rightarrow 2(b-1)^2 = 0 $	
	$a \Rightarrow b = 1$	
	OR	1
	$Y = log_7(log_e x)$	
	$y = \frac{\log_e(\log_e x)}{\log_e 7}$	
	$\frac{dy}{dx} = \frac{1}{(\log_e 7)x(\log_e x)} = \frac{1}{x\log_e(7x)}$	1
25	$\frac{dx}{dx} = \frac{\log 7}{x \log_e x} \frac{\log_e 7}{x \log_e 7x}$	1
23	$A^2 = \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}$	1
	$=4\begin{bmatrix}2 & -2\\-2 & 2\end{bmatrix}$	
	$\begin{bmatrix} 1-2 & 2 \end{bmatrix}$ $=4A$	1
	K=4	
	Section: C (SA of 3 Marks each)	
26	$\frac{dx}{dy} - \frac{x}{y} = 2y^3 \text{ (L.D.E.)}$	1
	I.F. = $e^{\int -\frac{1}{y}dy} = \frac{1}{y}$	
	$1.1^{\circ} = e^{-y} = -$	1
		1
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$	1
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$	1
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR	
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR	1
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR $\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$	
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR $\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$ Homogeneous diff. Equation Let y = vx then	1
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR $\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$ Homogeneous diff. Equation Let y = vx then	1 1 1⁄2
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR $\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$ Homogeneous diff. Equation Let $y = vx$ then $v + x \frac{dv}{dx} = v + \sqrt{1 - v^2}$	1
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR $\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$ Homogeneous diff. Equation Let $y = vx$ then $v + x \frac{dv}{dx} = v + \sqrt{1 - v^2}$ $\frac{dv}{\sqrt{1 - v^2}} = \frac{dx}{x}$	1 1 1⁄2
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR $\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$ Homogeneous diff. Equation Let $y = vx$ then $v + x \frac{dv}{dx} = v + \sqrt{1 - v^2}$ $\frac{dv}{\sqrt{1 - v^2}} = \frac{dx}{x}$ $\sin^{-1} v = \log x + C$	1 1 1/2 1/2
	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR $\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$ Homogeneous diff. Equation Let $y = vx$ then $v + x \frac{dv}{dx} = v + \sqrt{1 - v^2}$ $\frac{dv}{\sqrt{1 - v^2}} = \frac{dx}{x}$ $\sin^{-1} v = \log x + C$	1 1 1⁄2
27	Solution is: $x \frac{1}{y} = \int 2y^3 \cdot \frac{1}{y} dy$ $\frac{x}{y} = \frac{2}{3}y^3 + C$ OR $\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x}$ Homogeneous diff. Equation Let $y = vx$ then $v + x \frac{dv}{dx} = v + \sqrt{1 - v^2}$ $\frac{dv}{\sqrt{1 - v^2}} = \frac{dx}{x}$	1 1 1/2 1/2

		1
	F = number 4 had appeared at least once	
	$E = \{(1,5)(5,1)(2,4)(4,2)(3,3)\}$ $E = \{(1,4)(2,4)(3,4)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,4)(6,4))\}$	
	$F = \{(1,4)(2,4)(3,4)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,4)(6,4)\}$ $E \cap F = \{(2,4)(4,2)\}$	2
	$P(E \cap F) = \frac{2}{36}; P(E) = \frac{11}{36}$	1^{2}
	$P(\frac{E}{E}) = \frac{P(E)}{P(E \cap E)} = \frac{2}{11}$	-
28	Correct feasible region	1.5
29	Solving equations and correct corner points $\mathbf{I} = \sqrt{2} \mathbf{I}$	1.5
29	Let $\sqrt{x} + 1 = t$ $\Rightarrow \sqrt{x} = t - 1$	
	$ => \sqrt{x} = t - 1$ $ =>x = (t - 1)^2$	
	$=>x=(t-1)^{-1}$ =>dx=2(t-1)	1
	$=>\int \frac{x}{\sqrt{x+1}} dx = \int \frac{2(t-1)^3}{t} dt$	
	$=\int 2(t^2 - \frac{1}{t} - 3t + 3)dt$	1
	$=2(\frac{t^3}{2}-\log t-\frac{3t^2}{2}+3t)+C$	1
	5 2	
	$=2\left[\frac{(\sqrt{x}-1)^3}{3} - \log(\sqrt{x}-1) - \frac{3(\sqrt{x}-1)^2}{2} + 3(\sqrt{x}-1)\right] + C$	
	OR	
	Sol $J = \begin{pmatrix} 1 \\ 0 \end{pmatrix} dx = \begin{pmatrix} 1 \\ 1 \end{pmatrix} dx = \begin{pmatrix} 1 \\ 0 \end{pmatrix} dx$	
	Sol. I= $\frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{x^2 + 2x + 4}} = \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{(x+1)^2 + (\sqrt{3})^2}} = \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{(t)^2 + (\sqrt{3})^2}}$	
	(put x+1=t => dx=dt)	
	$=\frac{1}{\sqrt{3}}\log t+\sqrt{t^2+3} +c$	
	$=\frac{1}{\sqrt{3}}\log\left (x+1) + \sqrt{x^2 + 2x + 4}\right + c$	
	$\sqrt{3}$ $\log\left[\left(x+1\right)+\sqrt{x}+2x+1\right]+c$	
30	$dx = 2\pi e^{\theta} (\sin \theta + \cos \theta) = \frac{dx}{dx} = 2\pi e^{\theta} \cos \theta = 1$	1
50	$x = ae^{\theta}(sin\theta + \cos\theta) \Rightarrow \frac{dx}{d\theta} = 2ae^{\theta}\cos\theta$ and	1
	$y = ae^{\theta}(sin\theta - \cos\theta) \Rightarrow \frac{dy}{d\theta} = 2ae^{\theta}\sin\theta$	
	$\frac{dy}{dx} = \frac{2ae^{\theta}\sin\theta}{2ae^{\theta}\cos\theta} \Rightarrow \frac{dy}{dx} = tan\theta \qquad(1)$	1
	$dx 2ae^{\theta}\cos\theta dx (-)$	
	and $\frac{x+y}{x-y} = \frac{ae^{\theta}(\sin\theta+\cos\theta) + ae^{\theta}(\sin\theta-\cos\theta)}{ae^{\theta}(\sin\theta+\cos\theta) - ae^{\theta}(\sin\theta-\cos\theta)} = tan\theta (2)$	
	From (1) & (2) $\frac{d y}{dx} = \frac{x+y}{x-y}$.	1
31	<i>ax x-y</i>	
	$I = \int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} dx$	
	$1-2\cos 3x$ ax	1

Page 29 | 66

[1
	$=\int \frac{2\cos\frac{9x}{2}\cos\frac{x}{2}}{3-4\cos^{2}(\frac{3x}{2})} dx$	1
	Divide and multiply by $\cos \frac{3x}{2}$	
	$I = \int \frac{2\cos\frac{9x}{2}\cos\frac{x}{2}\cos\frac{3x}{2}}{3\cos\frac{3x}{2} - 4\cos^{3}(\frac{3x}{2})} dx$	
	$=-\int \frac{2\cos\frac{9x}{2}\cos\frac{3x}{2}\cos\frac{3x}{2}}{\cos\frac{9x}{2}} dx$	1
	$=-\int (\cos 2x + \cos x) dx$ $=-\frac{\sin 2x}{2} - \sin x + C$	
	$\frac{1}{2}$ OR	
	Let I= $\int_0^{\pi} x \log \sin x dx \dots (1)$	
	Using P4	
	$I = \int_0^{\pi} (\pi - x) logsinx dx(2)$	1
	Adding 1 and 2	
	$2I=\pi \int_0^\pi \log \sin x dx$	
	Using P6	
		1
	I=2. $\frac{\pi}{2} \int_{\pi}^{\frac{\pi}{2}} \log \sin x dx$	
	$I=\pi \int_0^{\frac{\pi}{2}} logsinx dx$	1
	$I=\pi(-\frac{\pi}{2}\log 2)$	1
	$I = -\frac{\pi^2}{2} \log 2$	
	Section: D (LA of 5 Marks each)	
32	Graph of curve and line	1.5
	Intersecting points (-5/3, 25/6) and (2,6	0.5
	Correct integral and limit	1
	Solving integral (-1.667, 4.167)	1.5
	Actual answer	0.5
33	$\mu - 3\lambda = 4 \text{ and } 17\mu - 3\lambda = 20 \Rightarrow \mu = 1 \text{ and } \lambda = -1$	2.5
	PV of the points at which they meet so that the distance between them is the	1
	shortest are $5\hat{i} + 4\hat{j}$ and $-\hat{i} - 2\hat{j} - 3\hat{k}$	1
	$\overrightarrow{PQ} = -\widehat{6}\iota - 6\widehat{j} - 3\widehat{k}$ SD = 9 units	0.5
	OR	0.0
	Equation of Path $\frac{x}{2} = \frac{y}{-4} = \frac{z}{4}$ d.r.s. 2,-4,4	
	When t=10 sec, $x = 20$, $y = -40$, $z = 40$	1.5
	So the rocket will be at the point $P(20,-40,40)$, $OP = 60$ km	1
L		1

P a g e 30 | 66

	Distance = $10\sqrt{3}$	1 1.5
34	For one-one	
	Let $f(x_1)=f(x_2)$	
	$\frac{x_1}{x_1^2 + 1} = \frac{x_2}{x_2^2 + 1}$	
	$ \begin{array}{c} x_1 + 1 & x_2 + 1 \\ (x_1 - x_2)(1 - x_1 x_2) = 0 \end{array} $	
	$x_1 = x_2$	1
	Therefore $f(x)$ is one-one	
	For onto	
	Let $y = \frac{x}{x^2 + 1}$	
	$\Rightarrow y(x^2 + 1) = x$	
	$\Rightarrow yx^2 - x + 1 = 0$	
	For real roots $D \ge 0$	
	$1-4y^2 \ge 0$	
	$y \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ =Codomain. Therefore, function is onto also	2
	Images of 3 are $f(3)=3/10$ and $f(4)=4/17$	1
	Preimage of -1	1
	$-1=\frac{x}{x^2+1}$	1
	x^{2+1} $x^{2}+x+1=0$ which gives non-real roots. Therefore, no preimage of -1 exists	1
	OR	
	(a,b) R(c,d) if $\frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$	1
	For reflexive (a,b) $R(a,b)$	1
	$\frac{1}{a} + \frac{1}{b} = \frac{1}{a} + \frac{1}{b}$	1
	For symmetric (c,d) $R(a,b)$	1
	$\frac{1}{a} + \frac{1}{d} = \frac{1}{c} + \frac{1}{b}$	
	For transitive	
	(a,b) R(c,d) if $\frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$ (1)	
	Let (c,d) $R(e, f)$ if $\frac{1}{e} + \frac{1}{d} = \frac{1}{c} + \frac{1}{f}$ (2)	2
	Adding (1) and (2) we get 1	
	$\frac{1}{e} + \frac{1}{b} = \frac{1}{a} + \frac{1}{f}$	
	Which implies (a,b) R (e,f)	
	Therefore, transitive also	
	Above relation is a n equivalence relation	
	Equivalence class of (3,4) is (4,3)	1
35	$AB = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$	
	AB = 2 1 -3 -5 0 5	
	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}$	2
	$\Rightarrow AB = 10 I$	
	$\Rightarrow A(\frac{B}{10}) = I$	
L		I

	4 4 - 1 x	
	$ \Rightarrow AA^{-1} = I $ $ \Rightarrow A^{-1} = \frac{B}{10} $	
	$A^{-1} = \frac{B}{10}$ $A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$	1.5
	$\Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z} \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$	
	$x \Rightarrow x = 1/2$; $y = -1$ and $z = 1$	1.5
	Section: E (CS Based of 4Marks each)	
36	(i) 15, 0, 0; 0, 8, 6 (ii) Answer: $00\sqrt{15^2} = 15$ unit, & $\sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} =$	1 1
	10 unit (iii) $\vec{N} = A \times \vec{B} \Rightarrow \vec{N} = \begin{vmatrix} i & j & k \\ 15 & 0 & 0 \\ 0 & 8 & 6 \end{vmatrix} = -15(6j-8k) = -90j+120k; 0, -$	2
	90, 120 & Here $ \vec{N} = \sqrt{90^2 + 120^2} = \sqrt{22500} = 150$	
	OR	
	$\vec{F} = 910 (1/2\hat{\imath} - 6/7\hat{\jmath} + 1/7\hat{k}) = 455\hat{\imath} - 780\hat{\jmath} + 130\hat{k}.$ The dot product is just $\vec{F} \cdot \vec{N} = 455 \times (0) - 780 \times (-90) + 130 \times 120 =$	1
	85,800 watts. From the definition of dot product: $\vec{F} \cdot \vec{N} = \vec{F} \vec{N} \cos\theta$ Then since $ \vec{F} =$	1
	910 and $ \vec{N} = 150$ and $\vec{F} \cdot \vec{N} = 85,800$.	2
37	(i) $P'(x) = -10x + 125 = 0$ x = 12.5	1
	OR	
	P(12.5) = Rs. 38281.25	1
	(ii) $P(2) = 37730$ (iii) $38250 = -5x^2 + 125x + 37500$	1
	$5x^2 - 125x + 750 = 0$	
	x=15 or x=10	2
38	(1) 4/7 (2) 4/15	22
L		<u> </u>

SAMPLE QESTION PAPER -04 (2024-25)

SUBJECT: MATHEMATICS (041)

Time: - 3 Hours

CLASS: XII Max Marks: - 80

General Instructions:

Read the following instructions very carefully and strictly follow them:

(i) This Question paper contains 38 questions. All questions are compulsory.

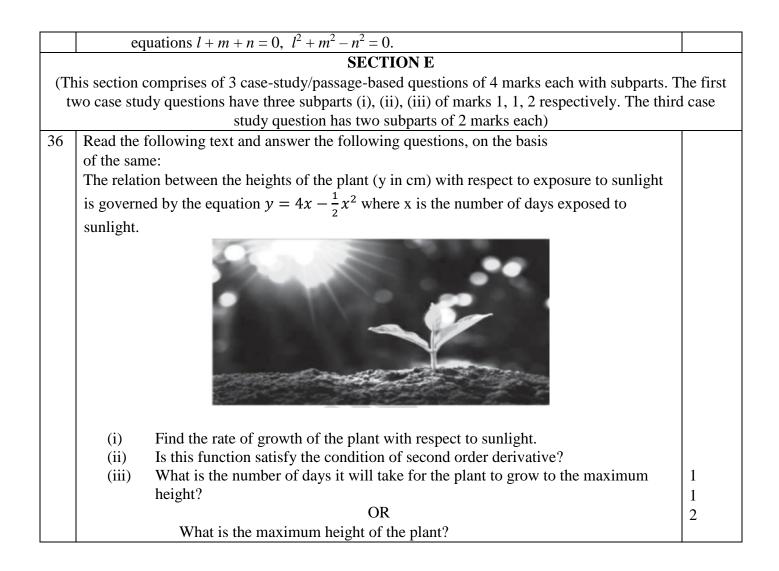
(ii)This Question paper is divided into five Sections - A, B, C, D and E.

(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.

(iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.

(v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.

(vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.


(vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each. (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.

Q .	SECTION A	Marks
No	(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the	
•	correct option (Question 1 - Question 18):	
1	The number of all possible matrices of order 3×3 with each entry 0 or 1 is:	1
	(a) 27 (b) 18 (c) 81 (d) 512	
2	If $A = [a_{ij}]$ is a symmetric matrix of order n, then	1
	(a) $a_{ij} = 1/a_{ij}$ for all i,j (b) $a_{ij} \neq 0$ for all i,j	
	(c) $a_{ij} = a_{ji}$ for all i,j (d) $a_{ij} = 0$ for all i, j	
3	(a) $a_{ij} = 1/a_{ij}$ for all i,j (b) $a_{ij} \neq 0$ for all i,j (c) $a_{ij} = a_{ji}$ for all i,j (d) $a_{ij} = 0$ for all i, j Let A be a nonsingular square matrix of order 3×3 . Then $ adj A $ is equal to	1
	(a) $ A $ (b) $ A ^2$ (c) $ A ^3$ (d) $3 A $	
4	The area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq. units. The value of k will	1
	be	
	(a) 9(b) 3(c) - 9(d) 6If A and B are invertible matrices, then which of the following is not correct?	
5	If A and B are invertible matrices, then which of the following is not correct?	1
	(a) $adj A = A \cdot A^{-1}$ (b) $det(A)^{-1} = [det (A)]^{-1}$	
	(a) $adj A = A . A^{-1}$ (b) $det(A)^{-1} = [det (A)]^{-1}$ (c) $(AB)^{-1} = B^{-1} A^{-1}$ (d) $(A + B)^{-1} = B^{-1} + A^{-1}$	
6	The function $f(x) = [x]$, where [x] denotes the greatest integer function, is continuous at	1
	(a) 4 (b) -2 (c) 1 (d) 1.5	
7	Differential coefficient of sec $(\tan^{-1}x)$ w.r.t. <i>x</i> is	1
	(a) $\frac{x}{\sqrt{1+x^2}}$ (b) $\frac{x}{1+x^2}$ (c) $x\sqrt{1+x^2}$ (d) $\frac{1}{\sqrt{1+x^2}}$	
8	The rate of change of the area of a circle with respect to its radius r at $r = 6$ cm is	1
	(a) 10π (b) 12π (c) 8π (d) 11π	

9	On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$ decreasing?	1
	(a) (0,1) (b) $(\frac{\pi}{2},\pi)$ (c) $(0,\frac{\pi}{2})$ (d) None of these	
10	$\int \frac{dx}{\sin^2 x \cos^2 x} \text{ is equal to}$	1
	(a) $\tan x + \cot x + c$ (b) $\sin x + \cos x + c$	
	(c) $\tan x - \cot x + c$ (d) $\sin x - \cos x + c$ The value of $\int_{a}^{-a} \sin^{3}x dx$ is	
11	The value of $\int_{a}^{-a} \sin^{3}x dx$ is	1
	(a) a (b) $a/3$ (c) 1 (d) 0	
12	The degree of the differential equation	1
	$\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0 \text{ is}$	
	(a) 3 (b) 2 (c) 1 (d) not defined	
13	A homogeneous differential equation of the from $\frac{dy}{dx} = h\left(\frac{x}{y}\right)x$ can be solved by making the	1
	substitution.	
14	(a) $y = vx$ (b) $v = yx$ (c) $x = vy$ (d) $x = v$ If is \vec{a} nonzero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if	1
	(a) $\lambda = 1$ (b) $\lambda = -1$ (c) $a = \lambda $ (d) $a = \frac{1}{ \lambda }$	
15	The coordinates of the foot of the perpendicular drawn from the point $(2, 5, 7)$ on the x-axis	1
	are given by	
1.6	(a) $(2, 0, 0)$ (b) $(0, 5, 0)$ (c) $(0, 0, 7)$ (d) $(0, 5, 7)$	
16	The feasible solution for a LPP is shown	1
	in given figure. Let $Z=3x-4y$ be the (4,10)	
	objective function. Minimum of Z occurs at (0, 8)	
	e) (0,0)	
	f) $(0,8)$ (6,5)	
	g) (5,0)	
	h) $(4,10)$ (0,0) (5,0)	
17	Region represented by $x \ge 0, y \ge 0$ is:	1
	(a) First quadrant (b) Second quadrant	
	(c) Third quadrant (d) Fourth quadrant	
18	If A and B are two events such that $P(A)+P(B)-P(A \text{ and } B)=P(A)$, then	1
	(b) $P(B/A) = 1$ (b) $P(A/B) = 1$ (c) $P(A/B) = 0$ (d) $P(B/A) = 0$	

	ASSERTION-REASON BASED QUESTIONS	
	(Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. The	
st	atements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the co	orrect
	answer from the options (A), (B), (C) and (D) as given below.)	
(d)	Both A and R are true and R is the correct explanation of A.	
(e)	Both A and R are true but R is not the correct explanation of A. A is true but R is false.	
(f) (g)	A is false but R is true.	
19	A: The Principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) + 2 \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is equal to $\frac{5\pi}{4}$	1
	R: If domain of $\cos^{-1} x$ and $\sin^{-1} x$ are respectively $(0, \pi)$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	
20	A: The following straight lines are perpendicular to each other.	1
	$\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$ and $\frac{1-x}{-1} = \frac{y+2}{2} = \frac{3-z}{3}$	
	R: Let line L-l passes through the point (x_1, y_1, z_1) and parallel to the vector whose	
	direction ratios are a_1 , b_1 , and c_1 , and let line L- 2 passes through the point (x_2, y_2, z_2)	
	and parallel to the vector whose direction ratios are a_2, b_2 , and c_2, \cdot Then the lines L-1 and L 2 are some director if $a_2, b_3, b_4, b_5, b_6, b_7, b_8, b_8, b_8, b_8, b_8, b_8, b_8, b_8$	
	L-2 are perpendicular if $a_1 \cdot a_2 + b_1 \cdot b_2 + c_1 \cdot c_2 = 0$	
	SECTION B (This section comprises of 5 years short answer (VSA) type questions of 2 marks each)
21	(This section comprises of 5 very short answer (VSA) type questions of 2 marks each. Check whether the relation R in the set R of real numbers, defined as $R = \{(a, b): a \le b^2\}$	2
21	is transitive.	2
22	Find $\frac{dy}{dx}$ of the function $y^x = x^y$	2
	$\frac{1}{dx} = \frac{1}{dx} = \frac{1}{dx}$	
	ŬK (
	Find the values of k so that the function f is continuous at the indicated point	
	$f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi\\ \cos x, & \text{if } x > \pi \end{cases} \qquad at \ x = \pi$ Evaluate: $\int \frac{x}{(x+1)(x+2)} dx$	
23	Evaluate: $\int \frac{x}{(x+1)(x+2)} dx$	2
24	Find the area of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 16$. OR	2
	Find the area of the region in the first quadrant enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.	
25	If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$	2
	SECTION C	1
	(This section comprises of 6 short answer type questions (SA) of 3 marks each)	
26	If $y = 3 \cos(\log x) + 4 \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$	3
27	Exclusion $\int \sqrt{1+2u} = u^2 du$	3
	Evaluate: $\int \sqrt{1 + 3x - x^2} dx$	

	OR	
	Evaluate: $\int_0^1 (xe^x + \sin\frac{\pi x}{4}) dx$	
28	Find the area of the region bounded by the parabola $y = x^2$ and $y = x $.	3
29	Solve the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ OR	3
	Solve the differential equation $x \frac{dy}{dx} + 2y = x^2$; $(x \neq 0)$	
30	Solve the following Linear Programming Problem graphically:	3
	Maximize $Z = 5x + 2y$ subject to the constraints:	
	$x - 2y \le 2$, $3x + 2y \le 12$, $-3x + 2y \le 3$, $x \ge 0$, $y \ge 0$.	
31	Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find $E(X)$. OR	3
	The random variable X has a probability distribution P(X) of the following form, where k is some number: $ \begin{pmatrix} k, & \text{if } x = 0 \\ k, & \text{if } x = 1 \end{cases} $	
	$P(X) = \begin{cases} k, & if \ x = 0\\ 2k, & if \ x = 1\\ 3k, & if \ x = 2\\ 0, & otherwise \end{cases}$	
	(a) Determine the value of k .(b) Find P (X < 2),(c) Find P (X \ge 2),SECTION D	
32	(This section comprises of 4 long answer (LA) type questions of 5 marks each) Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{1 + x}$ by $C\mathbb{R}$ is neither one one per onto	5
52	Show that the function f : R \rightarrow R defined by f(x) = $\frac{x}{x^2+1}$, $\forall x \in \mathbb{R}$ is neither one-one nor onto. OR	5
	Let f: W \rightarrow W be defined by : f(n) = $\begin{cases} n-1, \text{ if } n \text{ is odd} \\ n+1, \text{ if } n \text{ is even} \end{cases}$. Show that f is one-one and onto .	
33	Solve the following system of equations by matrix method. 3x - 2y + 3z = 8 2x + y - z = 1 4x - 3y + 2z = 4	5
34	Evaluate $\int \frac{\sqrt{x^2+1} \left[\log(x^2+1) - 2\log x \right]}{x^4} dx$	5
	$\frac{1}{x^4}$ OR	
	Evaluate $\int_{0}^{\frac{\pi}{2}} \log \sin x dx$	
35	Prove that the lines $x = py + q$, $z = ry + s$ and $x = p'y + q'$, $z = r'y + s'$ are perpendicular if $pp' + rr' + 1 = 0$.	5
	pp + m + 1 = 0. OR	
	Find the angle between the lines whose direction cosines are given by the	

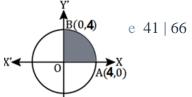
37	Consider the following diagram, where the forces in the cable are given.	
57	Consider the following diagram, where the forces in the cable are given.	
	(iii) Find The sum of an vectors of Direction Ratios along the cables. OR Find The cartesian equation of line along \overrightarrow{EA}	1 1 2
38	One day, a sangeet mahotsav is to be organised in an open area of Rajasthan. In recent years, it has rained only 6 days each year. Also, it is given that when it actually rains, the weatherman correctly forecasts rain 80% of the time. When it doesn't rain, he incorrectly forecasts rain 20% of the time. If leap year is considered, then answer the following questions.	
	(ii) Find The probability that it will rain on the chosen day, if weatherman predict rain for that day,	22

SAMPLE PAPER-04 (2024-25) CLASS XII MATHEMATICS BLUE PRINT

	Name of the Chapter	1 M (MCQ) Section A	2 M(VSA) Section B	3 M(SA) Section C	5 M(LA) Section D	4 M(Case Based) Section E	Total
Unit- I	Relation and Function				1(5)		
	Inverse Trigonometric Functions	1(1) AR	1(2)				3(8)
Unit - II	Matrices	2(2)					6(10)
	Determinant	3(3)			1(5)		0(10)
Unit - III	Continuity and Differentiability	2(2)	1(2)				
	Application of Derivative		1(2)			2(8)	
	Integrals	2(2)		3(9)			15(35)
	Application of Integrals				1(5)		
	Differential Equations	2(2)		1(3)			
Unit - IV	Vector Algebra	3(3)	1(2)				
	3-Dimensional Geometry	1(1) 1(1)AR	1(2)		1(5)		8(14)
Unit – V	Linear Programming Problems	2(2)		1(3)			3(5)
Unit -VI	Probability	1(1)		1(3)		1(4)	3(8)
	Total	20(20)	5(10)	6(18)	4(20)	3(12)	38(80)

Note: Numeral outside the bracket denote the number of questions and numeral inside the bracket denotes the marks. AR: Assertive Reasoning Based.

SAMPLE PAPER- 04 (2024-25)


SUBJECT: MATHEMATICS (041)

Time: - 3 Hours

CLASS: XII Max Marks: - 80

Ţ	MARKING SCHEME	
Q. No.	<u>SECTION – A</u>	Marks
1	(d) 512	1
2	(c) $a_{ij} = a_{ji}$ for all i,j	1
3	$(b) A ^2$	1
4	(b) 3	1
5	(d) $(A + B)^{-1} = B^{-1} + A^{-1}$	1
6	(d) 1.5	1
7	(a) $\frac{x}{\sqrt{1+x^2}}$	1
8	(b) 12π	1
9	(d) None of these	1
10	(c) $\tan x - \cot x + c$	1
11	(d) 0	1
12	(d) not defined	1
13	(c) $x = vy$	1
14	(d) $a = \frac{1}{ \lambda }$	1
15	(a) (2, 0, 0)	1
16	(b) (0,8)	1
17	(a) First quadrant	1
18	(b) $P(A/B) = 1$	1
19	(c) A is true but R is false.	1
20	(a) Both A and R are true and R is the correct explanation of	1
	A.	
	<u>SECTION – B</u> This section comprises of very short answer type-questions (VSA) of 2 marks each.	
21	$(3, 2), (2, 1.5) \in \mathbb{R}$	1
21	$(3, 2), (2, 1.3) \in \mathbf{R}$ (as $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$)	1
	$(u, s) < 2^{-1} - 4 u u (2^{-1} - 2.25)$ But, 3 > (1.5) ² = 2.25, \therefore (3, 1.5) \notin R	
	\therefore R is not transitive.	1
22	Taking logarithm on both sides	-
	$x \log y = y \log x$	
	Differentiating both sides with respect to x	
	$\frac{x}{y}\frac{dy}{dx} + \log y = \frac{y}{x} + \log x\frac{dy}{dx}$	1
	$ \begin{cases} y dx & x & dx \\ \left(\frac{x}{y} - \log x\right) \frac{dy}{dx} = \left(\frac{y}{x} - \log y\right) \end{cases} $	

	$dy = y(y-x\log y)$	1
	So $\frac{dy}{dx} = \frac{y(y-x\log y)}{x(x-y\log x)}$	1
	OR	
	$f(x)$ is continous at $x = \pi$	
	$\lim_{x\to\pi}f(x) = f(\pi)$	1
	$\lim_{x \to \pi^+} f(x) = \lim_{x \to \pi^-} f(x) = k\pi + 1$	
	$\lim_{x\to\pi} \cos x = \lim_{x\to\pi} (kx+1) = k\pi + 1$	
	$-1 = k\pi + 1$	
	$k = \frac{-2}{-2}$	1
	$\kappa = \frac{1}{\pi}$	
23		
23	Consider	
	$\frac{x}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}$	
	We get	
	x = A(x + 2) + B(x + 1)	
	Now by equating the coefficients of x and constant term, we ge	
	$\mathbf{A} + \mathbf{B} = 1$	
	2A + B = 0	
	By solving the equations we get	
	A = -1 and B = 2	1
	Substituting the values of A and B	
	$\frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)} + \frac{2}{(x+2)}$	
	By integrating both sides w.r.t x	
	$\int \frac{x}{(x+1)(x+2)} dx = \int \frac{-1}{(x+1)} + \frac{2}{(x+2)} dx$	
	So we get	
	$= -\log \mathbf{x} + 1 + 2\log \mathbf{x} + 2 + c$	
	We can write it as	
	$= \log (x + 2)^2 - \log x + 1 + c$	1
	$= \log \frac{\left(x+2\right)^2}{\left(x+1\right)} + C$	1
24	the circle equation $x^2 + y^2 = 16$ (i)	
	From equation (i)	
	$x^2 + y^2 = 4^2$	
	$\Rightarrow y = \pm \sqrt{4^2 - x^2}$ Since sector AOPA lies in 1st Quedrent, the value of u is notitive	1
	Since sector AOBA lies in 1st Quadrant, the value of y is positive $\sqrt{\frac{1}{1}}$	1
	$y = \sqrt{4^2 - x^2}$	
	Area of Region AOBA = $\int_0^4 y dx = \int_0^4 \sqrt{4^2 - x^2} dx$	
	Y'	<u> </u>

		1
	$\left[x^2\sqrt{4^2 - x^2} + \frac{4^2}{2}\sin^{-1}\frac{x}{4}\right]_0^4$	
	$=[0+8\sin^{-1}1-0-0] = 8\frac{\pi}{2} = 4\pi$	
	Final answer:	1
	Therefore, required area $=4\pi$ square units.	1
	OR	
	the ellipse Equation $\frac{x^2}{25} + \frac{y^2}{16} = 1$ (i)	
	from equation –(i)	
	$y = \frac{4}{5}\sqrt{5^2 - x^2}$	
	5	
	Area of Region AOBA	1
	$=\int_{0}^{5} y dx$ (5.0)	1
	$=\frac{4}{5}\int_{0}^{4}\sqrt{5^{2}-x^{2}}dx$	
	3.0	
	$\frac{4}{5} \left[x^2 \sqrt{5^2 - x^2} + \frac{5^2}{2} \sin^{-1} \frac{x}{5} \right]_0^5$	
	$=\frac{4}{5}\left[0+\frac{25}{2}\sin^{-1}1-0-0\right]^{-1}$	
	$=\frac{4}{5}\frac{25}{2}\frac{\pi}{2}$	
	$=5\pi$	1
	Final answer:	1
27	Therefore, required area $=5\pi$ square units.	
25	a,b,c are unit vectors	
	$ \vec{a} = \vec{b} = \vec{c} = 1$	1
	$\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (given)	
	$\left(\vec{a}+\vec{b}+\vec{c}\right)^2=0$	
	$\therefore \vec{a} ^2 + \vec{b} ^2 + \vec{c} ^2 + 2(\vec{a}.\vec{b} + \vec{b},\vec{c} + \vec{c}\vec{a}) = 0$	
	$1+1+1+2(\vec{a}.\vec{b}+\vec{b},\vec{c}+\vec{c}\vec{a}) = 0$	
		1
	$\therefore \vec{a}.\vec{b}+\vec{b},\vec{c}+\vec{c}\vec{a}=-\frac{3}{2}$	1
	<u>SECTION C</u>	
	(This section comprises of short answer type questions (SA) of 3 marks each)	
26	$y = 3\cos(\log x) + 4\sin(\log x)$	
	$\frac{dy}{dx} = -3\sin(\log x)\frac{1}{r} + 4\cos(\log x)\frac{1}{r}$	
		1
	$x\frac{\mathrm{d}y}{\mathrm{d}x} = -3\sin(\log x) + 4\cos(\log x)$	
	dx	
	$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = -3\cos(\log x)\frac{1}{x} - 4\sin(\log x)\frac{1}{x}$	1
	$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} = -\{3\cos(\log x) + 4\sin(\log x)\}$	
	dx^2 dx dx	

P a g e 42 | 66

	$x^2 y_2 + x y_1 + y = 0$	1
27		
	Let $I=\int \sqrt{1+3x-x^2}dx$	
	$=\int \sqrt{1-\left(x^2-3x+rac{9}{4}-rac{9}{4} ight)}dx$	
	$=\int\sqrt{\left(1+rac{9}{4} ight)-\left(x-rac{3}{2} ight)^{2}}dx$	
	$=\int \sqrt{\left(rac{\sqrt{13}}{2} ight)^2-\left(x-rac{3}{2} ight)^2}dx$	1
	We know that, $\int \sqrt{a^2-x^2}dx=rac{x}{2}\sqrt{a^2-x^2}+rac{a^2}{2}{ m sin}^{-1}\Big(rac{x}{a}\Big)+C$	1
	$\therefore I = rac{x-rac{3}{2}}{2}\sqrt{1+3x-x^2} + rac{3}{8} { m sin}^{-1} igg(rac{x-rac{3}{2}}{rac{\sqrt{13}}{2}}igg) + C$	
	$=rac{2x-3}{4}\sqrt{1+3x-x^2}+rac{13}{8}{ m sin}^{-1}igg(rac{2x-3}{\sqrt{13}}igg)^{\prime}+C$	1
	OR	
	$\int_0^1 (xe^x) + \sin\Bigl(rac{\pi x}{4}\Bigr) dx$	
	Here, we will do integration by parts,	
	$\int (xe^x) = xe^x - \int e^x dx$	
	$\int \int (xe^x) = xe^x - e^x + c$	1
	Now, $\int \sin \Bigl(rac{\pi x}{4} \Bigr) dx = - rac{4}{\pi} \cos \Bigl(rac{\pi x}{4} \Bigr) + C$	1
	$\int_{0}^{1} (xe^{x}) + \sin\Bigl(rac{\pi x}{4}\Bigr) dx = [xe^{x} - e^{x}]_{0}^{1} + \left[-rac{4}{\pi} \cos\Bigl(rac{\pi x}{4}\Bigr) ight]_{0}^{1}$	
	$= e - e - (0 - e^{0}) - \frac{4}{\pi} \left(\frac{\cos \pi}{4} - \cos 0 \right)$	
	$=1-rac{4}{\pi}\left(rac{1}{\sqrt{2}}-1 ight)$	
	$=1+rac{4}{\pi}igg(rac{\sqrt{2}}{\sqrt{2}-1}igg)$	1
20	Curve $y = x^2$ is a parabola whose vertex is (0, 0) and is symmetric about y-axis.	
28	Equation $y = x $ represents two lines When $x > 0$, then $y = x$ When $x < 0$, then $y = -x$	
	Intersection points of $y = x$ and parabola $y = x^2$ are O (0, 0) and A (1, 1).	
	Intersection points of $y = -x$ and parabola $y = x^2$ and O (0, 0) and B (-1, 1).	

The region bounded by lines
$$y = x$$
 and $y = -x$ and parabola $y = x^{2}$ is shown in the
following figure.
Required area = Area of BLOMA
= 2 Area of OMA
= 2 Area of OMA
= 2 Area of $(\Delta OQA - Area of OMAQO)$
= $\int y$ (for line $y = x$) dx
 $-\int y$ (for parabola $y = x^{2}$) dx
= $2 \int_{0}^{1} x dx - 2 \int_{0}^{1} x^{2} dx$
= $2 \left[\frac{x^{2}}{2} \right]_{0}^{1} - 2 \left[\frac{x^{3}}{3} \right]_{0}^{1}$
= $2 \left[\frac{1}{2} - 0 \right] - 2 \left[\frac{1}{3} - 0 \right]$
= $2 x \frac{1}{2} - 2 x \frac{1}{3} = 1 - \frac{2}{3}$
= $\frac{1}{3}$ sq. unit.
29 $\frac{dy}{dx} = \frac{x + y}{x}$
It is a homogenous differential equation,
Put $y = vx$ and $\frac{dy}{dx} = v + x \frac{dv}{dx}$
 \therefore the equation becomes,
 $v + x \frac{dv}{dx} = \frac{x + vx}{x} = \frac{(1 + v)x}{x}$
= $1 + v$
 $x \frac{dv}{dx} = 1 + v - v = 1$

$$dv = \frac{dx}{x}$$
On integration
$$\int dv = \int \frac{dx}{x}$$
 $v = \log x + \log c$
Now, replace
$$v = \frac{y}{x}$$

$$\Rightarrow \frac{y}{x} = \log cx (of) cx = e^{\frac{y}{x}}$$

$$x = \frac{1}{c} e^{\frac{y}{x}}$$

$$x = k e^{\frac{y}{x}}, k = \frac{1}{c}$$
OR
We are given
$$x \frac{dy}{dx} + 2y = x^{2}$$

$$\Rightarrow \frac{dy}{dx} + 2\frac{y}{x} = x$$
This is of the form $\frac{dy}{dx} + Py = Q$

$$\therefore 1 \text{F.} = e^{\int \frac{2}{x} dx} = e^{2\log x} = e^{\log x^{2}} = x^{2}$$
General solution is:
$$yx^{2} = \int x \cdot x^{2} dx + c$$

$$\Rightarrow yx^{2} = \frac{x^{4}}{4} + c$$
30
$$1$$

Page 45 | 66

(CORNE	ER	Z=5	x + 2y								
	POINT	S		-		111		Y-axis				
	(0,0)		()	-			1				
				0				6-	-3x +	2y = 3		
	(2,0)							5-	\setminus /			
	$\left(\frac{7}{2},\frac{3}{4}\right)$			9				4-	oc (<u>3</u>	· <u>15</u>)		
				MUM)	_			3-	$/ \land$			
	$\left(\frac{3}{2},\frac{15}{4}\right)$)	1	5			$\left(0,\frac{3}{2}\right)$	2		\setminus	X-2V=2	
)	,	2				A+		QB	$\left(\frac{7}{2},\frac{3}{4}\right)$	
	$(0, \frac{3}{2})$			3			-1	0	1 2 A (2, 0	3	5 0	6 X-axis
					1		-	1			B	
Hen	ce. Z is i	maxin	num at x	$=\frac{7}{-1}$, v =	$\frac{3}{-}$ and n	naximun	value	= 19				
				-	4							
			2, 3, 4,		or coloct	ed numb	or)					
\mathbf{X}		$\frac{1}{2}$	3	4	5	6						
		-	5	•	5	0						
P(X	K)	2	4	6	8	10	-					
Ì	,	30	30	30	30	30						
X.F	P(X)	4	12	24	40	60						
		30	30	30	30	30						
				4+11	27247407	L60 140) 14					
Mea	n of X=	E(X)	$= \sum X P(X)$	$(X) = \frac{4+1}{2}$	30	$\frac{+60}{30} = \frac{140}{30}$	$\frac{1}{3} = \frac{1}{3}$					
The	non dom	mania	hlo V ha	a a nuch	ability d	OR Listaibuti	$\mathbf{D}(\mathbf{V})$) of t	ha falla	wing f	anna wiba	ma la
	me nun			is a prob	adinty d	listributi	$\operatorname{DIP}(\mathbf{A})$) 01 l	ine iono	wing i	orm, whe	ere k
X	1110 11411	0	1	2	OTH	IERWIS	E					
P(X	K)	K	2K	3K		0						
(a)			f all proł			be						
		+2k+		\Rightarrow k=1/6		1 1						
(b)			(x=0) +			$(\frac{1}{6}) = \frac{1}{2}$						
(c)	P(x	≥2) =	=3k+0=	$3(\frac{1}{\epsilon}) + 0 =$	$=\frac{1}{2}$							
				U		CTION	D					
(Thi	s sectio	on con	nprises (of long a		type que		(LA) of 5 m	arks e	ach)	
	E -ONE		-	0		~ .			-		,	
	$x_1, x_2 \epsilon$		onsider									
f (x_1	= f(x)	2)										
	$\frac{x_1}{x_1^2 + 1} =$	$\frac{x_2}{x_2}$										
\rightarrow -												

$ \Rightarrow x_1 x_2^2 + x_1 = x_2 x_1^2 + x_2 \Rightarrow x_1 x_2^2 + x_1 - x_2 x_1^2 - x_2 = 0 $	2.5
	2.5
$\Rightarrow x_1 x_2 + x_1 - x_2 x_1 - x_2 = 0$ $\Rightarrow x_1 x_2 (x_2 - x_1) - 1(x_2 - x_1) = 0$	
$\Rightarrow (x_1 x_2 - 1)(x_2 - x_1) = 0$	
$\Rightarrow (x_1 x_2 = 1) \text{ or } (x_2 = x_1)$	
We note that there are point, x_1 and x_2 with $x_1 \neq x_2$ and $f(x_1) = f(x_2)$, for instance, if	
we take $x_1 = 2$ and $x_2 = \frac{1}{2}$	
, then we have $f(x_1) = \frac{2}{5}$ and $f(x_2) = \frac{2}{5}$	
But $2 \neq \frac{1}{2}$. Hence f is not one-one.	
Onto:	2.5
Also, f is not onto for if so then for $1 \in \mathbb{R} \exists x \in \mathbb{R}$ such that $f(x) = 1$	2.0
which gives $\frac{x}{x^2+1} = 1$. But there is no such x in the domain R , since the equation	
$x^2 - x + 1 = 0$ does not give any real value of x.	
OR	
The given function $f:W \rightarrow W$ is defined by,	
$f(n) = \begin{cases} n - 1, \text{ if } n \text{ is odd} \\ n + 1, \text{ if } n \text{ is even} \end{cases}$	
n(n) = (n + 1), if n is even	
one one :-	
Consider that $f(n)=f(m)$.	
Case -1 If n is odd and m is even,	
then,	
n-1=m+1	
\Rightarrow n-m=2 This connect he possible	
This cannot be possible.	2.5
Case :- 2 If both n and m are odd, then, n-1=m-1	2.5
$\Rightarrow n=m$	
Case-3 If both n and m are even,	
then,	
n+1=m+1	
$\Rightarrow n=m$	
Thus, f is one-one.	
Onto	
It can be observed that any odd number $2k+1$ in the co-domain W is the image of $2k$ in	
domain W. Also, any even number 2k in the co-domain W is the image of 2k+1 in domain	2.5
W.	
SO Range = co-domain	
Thus, f is onto.	
$33 \qquad 3x - 2y + 3z = 8$	
2x + y - z = 1	
4x - 3y + 2z = 4	

The system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, and B = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$
We see that

$$|A| = 3(2-3) + 2(4+4) + 3(-6-4) = -17 \neq 0$$
Hence, A is non-singular and so its inverse exists. Now
A₁₁ = -1, A₁₂ = -8, A₁₃ = -10
A₂₁ = -5, A₂₂ = -6, A₂₃ = 1
A₃₁ = -1, A₃₂ = 9, A₃₃ = 7
Therefore A⁻¹ = $-\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$

$$x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -3 \\ -5 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
Hence $x = 1, y = 2$ and $z = 3$.
34

$$\int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \left[\log(x^2 + 1) - 2 \log x \right]}{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \sqrt{\frac{x^2 + 1}{x^2}} \log(x^2 + 1) - \frac{2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log x}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1) - 2 \log(x^2)}{x^4} dx$$

$$= \int \frac{\sqrt{x^2 + 1} \log(x^2 + 1)}{x^2} \log(x^2 + 1) - 2 \log(x^2 + 1) = \frac{1}{x^3} dx$$

$$= \int \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \frac{\sqrt{x^2 + 1}}{x^2} - \frac{1}{x^2} - \frac{1}{x^3} dx$$

$$= \int \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \frac{\sqrt{x^2 + 1}}{x^2} - \frac{1}{x^2} \frac{1}{x^3} dx$$

$$= \int \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \frac{1}{x^2} \frac{1}{x^2} + \frac{1}{x^2} - \frac{1}{x^2} \frac{1}{x^3} + \frac{1}{x^3} - \frac{1}{x^3} \frac{1}{x^3} + \frac{1}{x^3} \frac{1}{x^3} + \frac{1}{x^3} - \frac{1}{x^3} \frac{1}{x^3} - \frac{1}{x^3} \frac{1}{x^3} + \frac{1}{x^3} - \frac{1}{x^3} \frac{1}{x^3} +$$

P a g e 48 | 66

	$I = \int_{0}^{\frac{\pi}{2}} \log \sin(\frac{\pi}{2} - x) dx = \int_{0}^{\frac{\pi}{2}} \log \cos x dx (ii)$	1
	Adding the two values of I, we get	
	$2I = \int_0^{\frac{\pi}{2}} (\log \sin x + \log \cos x) dx$	
	$2I = \int_0^{\frac{\pi}{2}} (\log \frac{\sin 2x}{2}) dx$	
	$\frac{\pi}{2}$ $\frac{\pi}{2}$	
	$2I = \int_{-\infty}^{\frac{\pi}{2}} \log \sin 2x dx - \int_{-\infty}^{\frac{\pi}{2}} \log 2 dx$	
		1
	Put $2x = t$ in the first integral. Then $2 dx = dt$, when $x = 0$, $t = 0$ and when $x = \frac{\pi}{2}$, $t = \pi$	1
	Therefore	
	$2I = \frac{1}{2} \int_{\Omega} \log \sin t dt - \frac{\pi}{2} \log 2$	
	Now in the first integral we use P-6 π	1
	$\frac{\pi}{2}$	
	$2I = \frac{2}{2} \int \log \sin t dt - \frac{\pi}{2} \log 2$	
	Now in the first integral we use P-0	1
	$\frac{\pi}{2}$	1
	$2I = \int \log \sin x dx - \frac{\pi}{2} \log 2$	
	π_{1}	1
	$2I = I - \frac{\pi}{2} \log 2$	
	$I = -\frac{\pi}{2}\log 2$	1
35	We have, $x = py+q \Rightarrow y = \frac{x-q}{p}$ (i)	1
	And $z = ry+s$ \Rightarrow $y = \frac{z-s}{r}$ (ii)	
	[Using Eqs. (i) and (ii)] $y = \frac{1}{r}$ (ii)	15
	$\Rightarrow \frac{x-q}{p} = \frac{y}{1} = \frac{z-s}{r} \dots \text{(iii)}$	1.5
	p 1 r Similarly,	
	$\Rightarrow \frac{x-q'}{p'} = \frac{y}{1} = \frac{z-s'}{r'} \dots (iv)$	1.5
	p if these given lines are perpendicular to each other, then	
	$\Rightarrow a_1a_2 + b_1b_2 + c_1c_2 = 0$	1
	$\Rightarrow pp'+1+rr'=0$ $\Rightarrow nn'+rr'+1=0$	1
	$\Rightarrow pp' + rr' + 1 = 0$ Which is the required condition.	1
	OR	
	Given eqs. $l + m + n = 0$ (i)	

	$l^2 + m^2 - n^2 = 0$ (ii)	
	Eliminating n from both the equations, we have	
	$\Rightarrow l^2 + m^2 - (-l - m)^2 = 0$	
	$\Rightarrow l^{2} + m^{2} - l^{2} - m^{2} + 2lm = 0$	1
	$\Rightarrow 2lm = 0$	-
	$\Rightarrow l=0 \text{ or } m=0$	
	Now when $l=0$	
	Then by eq. (i) $m + n = 0$	
	\Rightarrow l=0 or m = - n	1
	\Rightarrow so dr of 1 st line (0, - n, n)	
	Now when $m = 0$	
	Then by eq. (i) $l + n = 0$	
	$\Rightarrow m = 0 \text{ or } l = -n$	1
	\Rightarrow so dr of 2 nd line (- n, 0, n)	
	Thus, Dr's two lines are proportional to $(0, -n, n)$ and $(-n, 0, n)$ i.e., $(0, -1, 1)$ and	
	(-1,0,1).	
	So, the vectors parallel to these given lines are $\vec{a} = -\hat{j} + \hat{k}$ and $\vec{b} = -\hat{i} + \hat{k}$	
	$now \cos \theta = \frac{\vec{a}\vec{b}}{ \vec{a} \vec{b} } \implies \cos \theta = \frac{1}{ \sqrt{2} \sqrt{2} } = \frac{1}{2} \implies \theta = \pi/3$	2
	<u>SECTION E</u>	
36	$(iv)y = 4x - \frac{1}{2}x^2$	
		1
	$=\frac{dy}{dx}=4-x$	1
	(iv) yes	2
	(\mathbf{v}) 4	
	OR 8	
37	(i) D is (-8, -6, 0) and that of E is (0, 0, 24)	
	$\therefore \text{ Vector } \overrightarrow{ED} \text{ is } (-8-0)\hat{\imath} + (-6-0)\hat{\jmath} + (0-24)\hat{k} \qquad \text{i.e., } -8\hat{\imath} - 6\hat{\jmath} - 24\hat{k}$	1
	(ii) B is $(8, 6, 0)$ and that of E are $(0, 0, 24)$, therefore length of cable	
	$EB = \sqrt{(8-0)^2 + (6-0)^2 + (0-24)^2} = \sqrt{676} = \sqrt{26} \text{ units}$	1
	$\begin{bmatrix} 2D - \sqrt{(0 - 0)} + (0 - 0) + (0 - 24) \\ - \sqrt{0} - \sqrt{20} \text{ units} \end{bmatrix}$	
	(iii) A is (8, -6, 0), B is (8, 6, 0) C is (-8,6,0), D is (-8, -6, 0) and that of E are (0, 0, 24).	
	$SO \vec{EA} + \vec{EB} + \vec{EC} + \vec{ED} = (8\hat{i}-6\hat{j}-24\hat{k}) + (8\hat{i}+6\hat{j}-24\hat{k}) + (-8\hat{i}+6\hat{j}-24\hat{k}) + (-8\hat{i}-6\hat{j}-24\hat{k})$	2
	$\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = -96\hat{k}$	
	EA + EB + EC + ED = -90k OR	
	The coordinates of A are $(8, -6, 0)$ and that of E are $(0, 0, 24)$.	
	So cartesian equation of line along \overrightarrow{EA} =	
	$\frac{x-0}{8-0} = \frac{y-0}{-6-0} = \frac{z-24}{0-24} \implies \frac{x}{-4} = \frac{y}{3} = \frac{z-24}{12}$	
38	Let <i>E</i> be the event that it rains on chosen	
	day, F be the event that it does not rain on chosen	

day and <i>A</i> be the event the weatherman predict rain.	
Then we have, $P(E) = \frac{6}{366}$, $P(F) = \frac{360}{366}$,	
Then we have, $P(E) = \frac{6}{366}$, $P(F) = \frac{360}{366}$, $P(A \mid E) = \frac{8}{10}$ and $P(A \mid F) = \frac{2}{10}$	2
(i) $P(A) = P(E) P(A E) + P(F) P(A F)$	Z
$= \frac{6}{366} \times \frac{8}{10} + \frac{360}{366} \times \frac{2}{10} = \frac{768}{3660} = \frac{64}{305}$ (ii) $P(E) = P(E) P(A E)$	2
(ii) $P\left(\frac{E}{A}\right) = \frac{P(E)P(A E)}{P(E)P(A E) + P(F)P(A F)}$	
$- \frac{\frac{6}{366} \times \frac{8}{10}}{\frac{1}{10}} - \frac{1}{1}$	
$-\frac{-\frac{6}{366}\times\frac{8}{10}+\frac{360}{366}\times\frac{2}{10}}{16}$	

SAMPLE QUESTION PAPER -05 (2024-25) SUBJECT: MATHEMATICS (041) CLASS: XII Max Marks: - 80

Time: - 3 Hours General Instructions:

Read the following instructions very carefully and strictly follow them:

(i) This Question paper contains 38 questions. All questions are compulsory.

(ii)This Question paper is divided into five Sections - A, B, C, D and E.

(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.

(iv) In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.

(v) In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.(vi) In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.

(vii) In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.(viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.

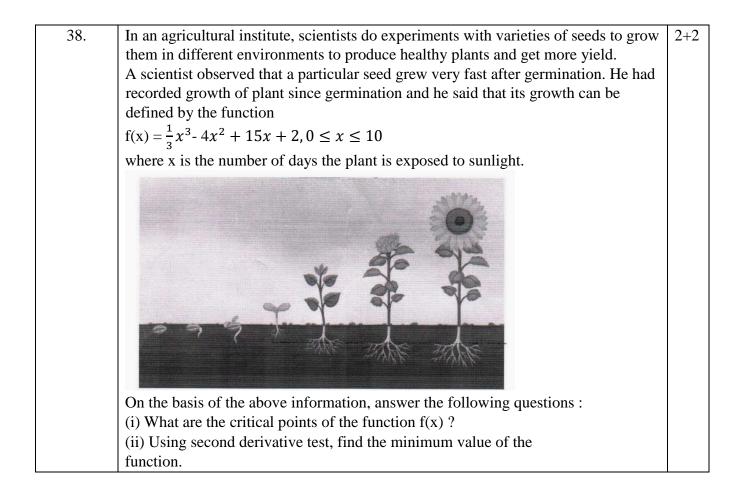
(ix) Use of calculator is not allowed.

SECTION A

(This section comprises of multiple choice questions (MCQs) of 1 mark each) Select the correct option (Question 1 - Question 18):

1.	If A is matrix o	forder m×nan	d B is a matrix such	that AB' and	B'A are both	1	
	defined, then order of matrix B is						
	(a) m×m	(b) n × n	(c) n × m	(d) m × n			

2.	If A is any square matrix of order 3×3 such that $ A = 3$, Then the value of $ adjA $ is	1
	(a) 3 (b) $\frac{1}{3}$ (c) 9 (d) 27	
3.	If $ \vec{a} = 10$, $ \vec{b} = 2$ and $\vec{a} \cdot \vec{b} = 12$, then the value of $ \vec{a} \times \vec{b} $ is	1
	(a) 5 (b) 10 (c) 14 (d) 16	
4.	The function $f(x) = \frac{4 - x^2}{4x - x^3}$ is	1
	(a) Discontinuous at only one point	
	(b) Discontinuous at exactly two points	
	(c) Discontinuous at exactly three points	
	(d) None of these	
5.	$\int log x dx$ is equal to	1
	(a) $x \log x + x + C$	
	(b) $x \log x - x + C$	
	(c) $x log x - 1 + C$	
	(d) $1/x + C$	
6.	The integrating factor of differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is	
	(a) $\cos x$ (b) $\tan x$ (c) $\sec x$ (d) $\sin x$	
7.	The point which does not lie in the half plane $2x + 3y - 12 \le 0$ is	1
	(a) $(1,2)$ (b) $(2,1)$ (c) $(2,3)$ (d) $(-3,2)$	
8.	If θ is the angle between any two vectors \vec{a} and \vec{b} , then $ \vec{a}.\vec{b} = \vec{a} \times \vec{b} $ when θ is equal to	1
	(a) 0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) π	


9.	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{1+\cos 2x} \text{is equal to}$	1
	(a) 1 (b) 2 (c) 3 (d) 4	
10.	Let A be singular matrix then find the value of x where A= $\begin{bmatrix} x & 2 \\ x - 2 & 4 \end{bmatrix}$	1
	(a). 2 (b) 4 (c) -2 (d) 0	
11.	The corner points of the feasible region determined by the system of linear constraints are (0,0), (0,40), (20,40), (60,20),(60,0). The objective function is $Z = 4x + 3y$. Compare the quantity in Column A and Column B	1
	Column A Column B	
	Maximum of Z 325	_
	(a) The quantity in Column A is greater.(b) The quantity in Column B is greater.	
	(c) The two quantities are equal	
	(d) The relationship cannot be determined on the basis of the information supplied.	
12.	If A is a square matrix such that $ A = 5$, Then the value of $ A A^{T} $ is	1
	(a) 25 (b) ± 25 (c) ± 5 (d) 5	
13.	If A is a 3×3 skew symmetric matrix, then the value of $ A $ is	1
	(a) Any real number (b) positive real number	
	(c) 0 (d) negative real number	
14.	If $P(A) = \frac{1}{2}$, $P(B) = 0$, then $P(A B)$ is	1

	(a) 0 (b) $\frac{1}{2}$ (c) not defined (d) 1	
15.	The general solution of $e^x \cos y dx - e^x \sin y dy = 0$ is	1
	(a) $e^x \cos y = k$ (b) $e^x \sin y = k$	
	(c) $e^x = k \cos y$ (d) $e^x = k \sin y$	
16.	If $x = t^2$ and $y = t^3$ then $\frac{d^2y}{dx^2}$	1
	(a). $\frac{3}{2}$ (b) $\frac{3}{4t}$ (c) $\frac{3}{2t}$ (d) $\frac{3}{4}$	
17.	The magnitude of projection $(2\hat{\imath} - \hat{j} + \hat{k})$ on $(\hat{\imath} - 2\hat{j} + 2\hat{k})$ is	1
	(a) 1 unit (b) 2 units (c) 3 units (d) 4 unit	
18.	If a line makes angles α , β , γ with the positive direction of co – ordinate axes, then the value of $sin^2 \alpha + sin^2 \beta + sin^2 \gamma$ is.	1
	(a) .0 (b) 1 (c) 2 (d) 3	
	 (Question numbers 19 and 20 are Assertion-Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the options (A), (B), (C) and (D) as given below.) (a) Both (A) and (R) are true and (R) is the correct explanation of (A). (b) Both (A) and (R) are true but (R) is not the correct explanation of(A). (c) (A) is true but (R) is false. (d) (A) is false but (R) is true. 	
19.	Assertion (A): Range of $cot^{-1}x$ is $(0,\pi)$ Reason (R): Domain of $tan^{-1}x$ is R.	1
20.	Assertion (A) : The acute angle between the line $\vec{r} = \hat{\imath} + \hat{\jmath} + 2\hat{k} + \lambda(\hat{\imath} - \hat{\jmath})$ and the x- axis is $\pi/4$ Reason (R) : The acute angle θ between the lines	1
	$\vec{r} = x_1 \hat{\imath} + y_1 \hat{\jmath} + z_1 \hat{k} + \lambda (a_1 \hat{\imath} + b_1 \hat{\jmath} + c_1 \hat{k})$ and	
	$\vec{r} = x_2 \hat{\imath} + y_2 \hat{\jmath} + z_2 \hat{k} + \mu (a_2 \hat{\imath} + b_2 \hat{\jmath} + c_2 \hat{k})$	
	is given by $\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$	
	SECTION B (This section comprises of 5 very short answer (VSA) type questions of 2 marks e	ach.)

21.	Write the principal value of $\tan^{-1}(\sqrt{3}) + \cot^{-1}(-\sqrt{3})$.	2
	OR	_
	If $A = \{1,2,3\}, B = \{4,5,6,7\}$ and $f = \{(1,4), (2,5), (3,6)\}$ is a function from A to	
	B. State whether f is one – one or not.	
22.	The radius of a ccircle is increasing at the rate of 5 cm/min. Find the rate of	2
	increasing of its area when its radius is 10 cm.	
23.	Find a vector in the direction of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ that has magnitude 10 units.	2
	OR	
	If a line makes angles 90 ⁰ , 60 ⁰ and θ with x, y and z axis respectively, where	
24	θ is acute, then find θ	
24.	Write the derivative of $\sin x$ with respect to $\cos x$.	2
25.	Find the area of triangle with vertices A $(0,1,-1)$, B $(1,0,-1)$ and C $(0,1,2)$	2
	Section C (This section comprises of 6 short answer (SA) type questions of 3 marks each.)	
	(This section comprises of a short answer (Srt) type questions of 5 marks each.)	
26.		3
	Find: $\int \sin^{-1}(2x) dx$.	
27.		3
	Find: $\int \frac{x}{(x^2+1)(x-1)} dx$	
28.	A and B throw a pair of dice alternately. A wins the game if he gets a total of 9	3
	and B wins if he gets a total of 7. If A starts the game, find the probability of	
	winning the game by B.	
	OR	
	A problem in Mathematics is given to 4 students A, B, C. Their chances of	
	solving the problem are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{2}{3}$ respectively. What is the probability	
	that the problem will be solved?	
29.	Evaluate : $\int_{0}^{\frac{\pi}{4}} log[1 + tanx]dx$	
	50 01 1	
	OR	
	Evaluate : $\int_{1}^{3} x^2 - 2x dx$	
30.	Solve the differential equation: $x \frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$	3
	$\frac{\partial u}{\partial x} = \int u u u (x)$	
	Find the particular solution of the differential equation	
	$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}$ given that $y = 0$ when $x = 1$.	
31.	Solve the following Linear Programming Problem graphically:	
	Minimize: $Z = 5 x + 10 y$	
	subject to	

36.	Read the following passage and answer the questions given below.	1+1 +2
The first t	on comprises of 3 case-study/passage-based questions of 4 marks each with subpa wo case study questions have three subparts (i), (ii), (iii) of marks 1, 1, 2 respective case study question has two subparts of 2 marks each)	
	SECTION E	I
35.	Using method of integration, find the area of the region $x^2 + y^2 = 4$ and $x = \sqrt{3}y$ with x-axis in first quadrant	5
25	x + y + z = 6, $x + 2z = 7$, $3x + y + z = 12$	5
	l3 1 1] equations	
34.	If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix}$, find A^{-1} . Use A^{-1} to solve the following system of	5
	A $(1, 9, 4)$ to the line joining the points P $(0, 1, 2)$ and C $(2, 2, 1)$	
	OR Find the co-ordinates of the foot of perpendicular drawn from the point	
	$\vec{r} = (2s+2) \hat{\iota} - (1-s) \hat{J} + (2s-1) \hat{k}.$	
	$\vec{r} = (t + 1)\hat{\iota} + (2 - t)\hat{j} + (1 + t)\hat{k}$	
55.		
33.	Find the shortest distance between the lines :	5
	one one function. Also check whether f is an onto function or not	
	OR Let f: $R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$ be a function defined as $f(x) = \frac{4x}{3x+4}$. Show that f is a	
32.	Let $A = \{x \in Z : 0 \le x \le 12\}$. Show that $R = \{(a, b) : a, b \in A, a - b \text{ is divisible} by 4 \}$ Is an equivalence relation. Also write the equivalence class [2].	5
	(This section comprises of 4 long answer (LA) type questions of 5 marks each)	
	SECTION D	
	$x \ge 0, y \ge 0$	
	$x - 2y \ge 0,$ $x + 2y \le 120,$	
	$\begin{array}{l} x+y \geq 60, \\ x-2y \geq 0, \end{array}$	

	Sonam wants to prepare a sweet box for Diwali at home. For making lower part of box, she takes a square piece of card board of side 18cm. (i) If x cm be the length of each side of the square cardboard which is to be cut off from corner of the square piece of side 18 cm, then x must lie in which interval ? (ii) What would be the volume of the box (in terms of x) ? (iii) (a)The values of x for which $\frac{dV}{dx} = 0$, are OR (b). What is the value of maximum volume ?					
37.	 Read the following passage and answer the questions given below. In a group activity class, there are 10 students whose ages are 16, 17, 15, 14, 19, 17, 16, 19, 16 and 15 years. One student is selected at random such that each has equal chance of being chosen and age of the student is recorded. Image: The selected student is a composite number. (i) Find the probability that the age of the selected student is a composite number. (ii) Let X be the age of the selected student. What can be the value of X ? (iii) (a) Find the probability distribution of random variable X and hence find the mean age. 	1+1 +2				
	(iii) (b) A student was selected at random and his age was found to be greater than 15 years. Find the probability that his age is a prime number.					

SAMPLE QUESTION PAPER -05, 2024-25 BLUEPRINT CLASS: XII MATHEMATICS (Code-041)

UNITS	NAME OF CHAPTERS	SECTION (Objectiv (1 MARK	e Type)	SECTION B (VSA) (2	SECTION C (SA) (3	SECTION D (LA) (5 MARKS	SECTION E (CBQ) (4 MARKS	TOTAL
		MCQ	ARQ	MARKS EACH)	MARKS EACH)	EACH)	EACH)	
UNIT-I (Relations &	RELATIONS AND FUNCTIONS			2(1)		5*(1)		8(3)
Functions)	INVERSE TRIGONOMETRY FUNCTION		1(1)					
UNIT-II	MATRICES	2(2)						10(6)
(Algebra)	DETERMINANT	3(3)				5(1)		10(6)
UNIT-III (calculus)	CONTINUITY & DIFFERENTIABILITY	2(2)		2*(1)	3(1)			
	APPLICATION OF DERIVATIVE	2(2)					4*(1)	35(17)

	INTEGRATION	2(2)		2(1)	3*(1)	5*(1)		
	APPLICATION OF INTEGRATION			2*(1)	3(1)			
	DIFFERENTIAL EQUATION	2(2)			3*(1)			
UNIT-IV	VECTORS	1(1)		2(1)				
(Vectors & 3D)	THREE-DIMENSIONAL GEOMETRY	1(1)	1(1)			5(1)	4*(1)	14(6)
UNIT-V (LPP)	LPP	2(2)			3(1)			5(3)
UNIT-VI (Probability)	PROBABILITY	1(1)			3*(1)		4(1)	8(3)
	TOTAL	18(18)	2(2)	10(5)	18(6)	20(4)	12(3)	80(38)

(*) represents question with internal choice. Marks are mentioned outside brackets. No. of questions - within the brackets.

SAMPLE PAPER-05

MATHEMATICS CLASS XII 2024-25

MARKING SCHEME

Class XII

Sub: Mathematics

Sr. No.	Answers and steps	Marks
1	(d) m × n	1
2.	(c) 9	1
3	(d) 16	1
4	(a) Discontinuous at exactly three points	1
5.	(e) $x \log x + x + C$	1
6.	(c) sec x	1
7.	(c) (2,3)	1
8.	(b) $\frac{\pi}{4}$	1
9.	(a) 1	1
10.	(c) -2	1
11	(b)The quantity in Column B is greater	1
12.	(a)25	1
13.	(c) 0	1
14.	(c) not defined	1
15	(a) $e^x \cos y = k$	1

 (b) 3/4t (b) 2 units (c) 2 (b) Both (A) and (R) are true but (R) is not the correct explanation of (A). 	1 1 1 1
 (c) 2 (b) Both (A) and (R) are true but (R) is not the correct explanation of(A). 	
(b) Both (A) and (R) are true but (R) is not the correct explanation of(A).	1
of(A).	1
(a) Doth (A) and (D) are true and (D) is the correct explanation of (A)	
(a) Both (A) and (R) are true and (R) is the correct explanation of (A)	1
$\frac{\frac{\pi}{3} + \frac{5\pi}{6}}{\frac{7\pi}{6}} = \frac{7\pi}{6}$ OR	1½ ½
	1
	ļ.
$\frac{dr}{dt} = 5cm/min$ $A = \pi r^{2}$ $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ $2\pi \ 10.5 = 20\pi \ sq \ cm/min$	1/2 1 1/2
	11/2
Required vector is $\frac{10(6\hat{\iota}-2\hat{\jmath}+3\hat{k})}{7}$	1/2
	1/2
	1/2
	1/2
$\theta = \frac{\pi}{6}, \frac{5\pi}{6}$	1/2
$y=\sin x, y = \cos x$ $\frac{d(\sin x)}{dx} = \cos x, \frac{d(\cos x)}{dx} = -\sin x$	1/2 +1/2
$\left \frac{dy}{dz}\right = \frac{\cos x}{-\sin x} = -\cot x$	1
$\overrightarrow{AB} = (\hat{\iota} - \hat{\jmath}), \overrightarrow{AC} = 3\hat{k}$	1/2
$\overrightarrow{AB} \times \overrightarrow{AC} = \frac{1}{2} \begin{vmatrix} i & j & k \\ 1 & -1 & 0 \\ 0 & 0 & 3 \end{vmatrix} = \frac{1}{2} (3\hat{\iota} - 3\hat{j})$	1
Area = $\sqrt{(\frac{3}{2})^2 + (\frac{3}{2})^2} = \frac{3}{2}\sqrt{2}$ sq units.	1⁄2
Applying correct formula	
$\int uv dx = u \int \{v dx - \int (\frac{du}{dx} \int v dx)\} dx$	1½ 1½
	$\frac{7\pi}{6}$ OR 1,2,3 have different images in B There is no element left which has image in B $\frac{dr}{dt} = 5cm/min$ $A = \pi r^{2}$ $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ $2\pi 10.5 = 20\pi sq cm/min$ Unit vector in direction of $\vec{a} = \hat{6}i - 2\hat{j} + 3\hat{k}$ is $\frac{6i-2\hat{j}+3\hat{k}}{\sqrt{36+4+9}}$ Required vector is $\frac{10(6\hat{i}-2\hat{j}+3\hat{k})}{7}$ OR $cos^{2}\alpha + cos^{2}\beta + cos^{2}\gamma = 1$ $cos^{2}90 + cos^{2}60 + cos^{2}\theta = 1$ $0 + \frac{1}{4} + cos^{2}\theta = 1 \cos\theta = \pm\sqrt{3}/2$ $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ $\frac{dsinx}{dx} = cos x, \ \frac{d(cosx)}{dx} = -sinx$ $\frac{dy}{dz} - sinx} = -cot x$ $\overline{AB} = (\hat{i} - \hat{j}), \overline{AC} = 3\hat{k}$ $\overline{AB} \times \overline{AC} = \frac{1}{2} \begin{vmatrix} i & j & k \\ 1 & -1 & 0 \\ 0 & 0 & 3 \end{vmatrix} = \frac{1}{2}(3\hat{i} - 3\hat{j})$ Area = $\sqrt{(\frac{2}{2})^{2} + (\frac{2}{2})^{2}} = \frac{3}{2}\sqrt{2}$ sq units. Applying correct formula

P a g e 60 | 66

	$\sin^{-1}(2x) \cdot x - \sqrt{1 - 4x^2} + c$	
27.	$\frac{x}{(x^2+1)(x-1)} = \frac{Ax+B}{(x^2+1)} + \frac{C}{(x-1)}$	1
	Finding A, B and C	1/2
	$A = \frac{-1}{2}, B = \frac{1}{2}, C = \frac{1}{2}$ $\int \frac{x}{(x^2 + 1)(x - 1)} dx = \int \frac{-x + 1}{2(x^2 + 1)} dx + \int \frac{dx}{2(x - 1)}$	1½
	$= \frac{-1}{2}\log(x^{1}+1) + \frac{1}{2}\tan^{-1}x + \frac{1}{2}\log(x-1) + c$	
28.	P(A) = 1/36, $P(B) = 1/36 P(A') = 35/36$, $P(B') = 35/36$	1
	$P(\text{winning of A}) = P(A) + P(\overline{AB}A) + P(\overline{ABAB}A) + \dots$	
	$\frac{1}{36} + \frac{1}{36} \left(\frac{35}{36}\right)^2 + \dots = \frac{\frac{1}{36}}{1 - \frac{35}{36}^2} = \frac{36}{71}$	1
	$P(\text{winning of B}) = P(\overline{AB}) + P(\overline{ABAB}) + P(\overline{ABABAB}) + \dots$	
	$\frac{1}{36}\left(\frac{35}{36}\right)^{1+}\frac{1}{36}\left(\frac{35}{36}\right)^{3} + = 35/71$	
	OR	1/2 1/2
	$P(A) = \frac{1}{3}, P(B) = \frac{1}{4} P(C) = \frac{2}{3}$	1/2
	$P(\overline{A}) = \frac{2}{3}, P(\overline{B}) = \frac{3}{4} P(\overline{C}) = \frac{1}{3}$	1
	Problem will be if anyone of these three solve the problem	1/2
	P(atleast one of them) = $1 - P(\overline{ABC})$	
	$1 - \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{1}{3} = 5/6$	
29	Applying property $\int_0^a f(x) dx \int_0^a f(a-x) dx$	1/2
	$I = \int_{-\infty}^{\frac{\pi}{4}} \log(1 + \frac{1 - tanx}{1 + tanx}) dx$	1 1⁄2
		1
	$I = \int_{0}^{\frac{n}{4}} \log 2 dx - \int_{0}^{\frac{n}{4}} \log(1 + \tan x) dx$	1
	$I = \log 2 \cdot \frac{\pi}{8}$	1
	OR Redefining the function $ x^2 - 2x = \begin{cases} -(x^2 - 2x) & \text{if } 1 \le x \le 2\\ (x^2 - 2x) & \text{if } 2 \le x \le 3 \end{cases}$	1

	$\int_{1}^{3} x^{2} - 2x dx = \int_{1}^{2} -(x^{2} - 2x) dx + \int_{2}^{3} (x^{2} - 2x) dx$	
	$\left[x^{2} - \frac{x^{3}}{3}\right]_{1}^{2} + \left[-x^{2} + \frac{x^{3}}{3}\right]_{2}^{3} = 2$	
30	Put y =vx $\frac{dy}{dx} = v + x \frac{dv}{dx}$	1/2
	$x(v + x\frac{dv}{dx}) = vx - x tan v$	1/2
	$\frac{dv}{tann} = \frac{-dx}{x}$	1/2
	$\frac{dv}{tanv} = \frac{-dx}{x}$ $\int \frac{dv}{tanv} = \int \frac{-dx}{x}$	1 ½
	$\log \sin v = \log c/x$	
	$\sin\frac{y}{x} = c/x$	
	OR	
	compare with $\frac{dy}{dx} + Py = Q$	
	$P(x) = \frac{2x}{1+x^2} Q(x) = (\frac{1}{1+x^2})^2$	1
	I. $F = e^{\int \frac{2x}{1+x^2} dx} = 1 + x^2$	
	Solution of equations is	1
	Y. IF = $\int Q \times IF dx$	
	y. $(1 + x^2) = \int \frac{1}{1 + x^2} dx$	1
	$y. (1 + x^2) = \tan^{-1} x + c$	
	Using condition x=0, y =1 , c= $\frac{-\pi}{4}$	
	y. $(1 + x^2) = \tan^{-1} x - \frac{\pi}{4}$	
31	$ \begin{array}{c} Y \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ (40, 20) D \\ A (60, 0) \\ (120, 0) \\ B \\ B \\ $	2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	Coorect image	

P a g e 62 | 66

	Z(60,0)=300				
	Z(120,0)=500 Z(120,0)=600				
	Z(60,30) = 600				
	Z(40,20) = 400 MAXIMUM AT LINE X+2Y=120				
32	Let $A = \{ x \in Z : 0 \le x \le 12 \}$. Show that $R = \{(a, b) : a, b \in A, d \in A \}$				
	$ a - b $ is divisible by 4 } Is an equivalence relation . Also write the	1			
	equivalence class [2].				
	R is reflexive relation iff $ a - a = 0$ is divisible by 4 which is true	1			
		1			
	R is symmetric :	2			
	Let $aRb \Leftrightarrow a - b $ is divisible by $4 \Leftrightarrow b - a $ is divisible by $4 \Leftrightarrow bRa$				
	R is transitive :				
	Let $aRb \Leftrightarrow a - b $ is divisible by $4 = a - b = \pm 4m$	1			
	$bRc \Leftrightarrow b - c $ is divisible by $4 \Leftrightarrow b - c = \pm 4n$	1			
	$a - c = \pm 4m \pm 4n$				
	aRc				
	Equivalance class of $[1] = \{1, 5, 9\}$				
	OR				
	To prove one one by taking $f(x_1)=f(x_2)$				
	$\Rightarrow \frac{4x_1}{3x_1+4} = \frac{4x_2}{3x_2+4} \Rightarrow x_1 = x_2$				
	$f(x) = \frac{4x}{3x+4} = y$				
	3xy+4y=4x	2			
	X(3y-4) = -4y				
	-4y				
	$x = \frac{-4y}{3y - 4}$				
	f is not onto as every element of y has preimage in x such that $f(x) = y$				
33.	(a) $\overrightarrow{a_1} = \hat{\iota} + 2\hat{j} + \hat{k}$ $\overrightarrow{a_2} = 2\hat{\iota} - \hat{j} - \hat{k}$				
	$\overrightarrow{b_1} = \hat{\iota} - \hat{\jmath} + \hat{k} b_2 = 2\hat{\iota} + \hat{\jmath} + 2\hat{k}$	1			
	$\vec{a_2} - \vec{a_1} = \hat{\iota} - 3\hat{j} - 2\hat{k}$	1			
	$\overrightarrow{b_1} \times b_2 = -3\hat{\iota} + 0\hat{\jmath} + 3\hat{k}$				
	$I\overrightarrow{b_1} \times \overrightarrow{b_2}I = 3\sqrt{2}$				
	$SD = \frac{\overline{I(a_2} - \overline{a_1}).(\overline{b_1} \times b_2)I}{ (\overline{b_1} \times \overline{b_2}) } = \frac{9}{3\sqrt{2}}$				
		1			

	(b). Equation of line $\frac{x}{2} = \frac{y+1}{-2} = \frac{z-3}{4}$ put $\frac{x}{2} = \frac{y+1}{-2} = \frac{z-3}{4} = k$ find co ordinates of any poin on line BC (2k,-2k-1,4k+3)	2 1 1
	find the dr's of perpendicular from A (($2k-1,-2k-1-8,4k+3-4$) Condition of perpendicular 2(2k-1)-2(-2k-9)+4(4k-1))=0 Value of k=1	
34	Point (2,-3,7) Find IAI = 4 Find adj(A) = $\begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$ Find $A^{-1} = \frac{1}{4} \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$ The solution of system of equation is X = $(A^{-1})B$ X = $\frac{1}{4} \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ 12 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} x = 3, y = 1 and z = 2$	1 1 1⁄2 1 1 1/2
35	Rough sketch Point of intersection in 1 st quadrant by putting y =x in equation of circle , we have $(1\sqrt{3},)$	1 ½ 1 2
	$\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{3}} dx + \int_{\sqrt{3}}^{2} \sqrt{4 - x^{2}} dx = \frac{x^{2}}{2\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} + \frac{x\sqrt{4 - x^{2}}}{2} + \frac{4\sin^{-1}\frac{x^{2}}{2}}{2\sqrt{3}}$ On solving	1/2

	$\sqrt{3}/2 + 2\frac{\pi}{2} - \sqrt{3}$								
	$\pi - \frac{\pi}{3} = 2\pi/3$								
36	(i) (0,9)	1							
	(ii) $\mathbf{v} = \mathbf{x}(\mathbf{r})$	2							
	(iii) (a)Find								
	X=3								
	OR								
	(iii) Check test on v								
	Maximum								
37	(i) 3/5	1							
	(ii) X=14,1	1							
	(iii) (a).	2							
	x	14	15	16	17				
	P(x)	0.1	0.2	0.3	0.2				
	Mean =1.4+3								
	OR								
	(iii)(b) P(gi								
	P(num								
	Reqiured p								
38	(1) F'(x)=		2						
	Critical poi	2							
	(i) $F''(x)=2x-8$, minimum value exist at $x=5$								
	(ii) Minimum value 56/3 cm @ F								

#