CHAPTER-13 SURFACE AREA & VOLUMES 04 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	A room is in the form of a cylinder surmounted by a hemispherical dome. The	
	base radius of hemisphere is one half the height of cylindrical part . Find the	
	total height of the room if it contains 1408/21 m ³ of air.	
2.	Krishnanagar is a small town in Nadia District of West Bengal. Krishnanagar	
	clay dolls are unique in their realism and quality of their finish. They are	
	created by modelling coils of clay over a metal frame. The figures are painted in natural colours and their heir is made either by sheen's wool or jute. Artisons	
	matural colours and men han is made cluter by sheep's wool of jute. Altisans	
	weavers to Donald Duck and present comic characters. These creations are	
	displayed in different national and international museums 300 600 A D B C	
	Here are a few images (not to scale) of some clay dolls of Krishnanagar.	
	The blue doll of Doll-3 is melted and its clay is used to make the cylindrical	
	drum of Doll-4. If the radius of the drum is also 3cm, find the height of the	
	drum.	
	Doll-1 Doll-2 Doll-3 Doll-4	
3.	One day Rohit was going home from school, saw a carpenter working on wood. He found	
	the cylinder is 24 cm and base radius is 7 cm. While watching this some questions came into	
	Rohit's mind. Help Rohit to find the answer of the following questions.	
	i. Find the slant height of the conical cavity so formed.	
	ii. What is the curved surface area of the conical cavity so formed? Also, find the volume of	
	iii. Find the external curved surface area of the cylinder.	
4.	i) Mr Lal has a gowdan where an object is there in the shape of a	
	cylinder with two hemispherical ends. If the total length of the	
	object is 60cm and diameter is 25cm Find the volume of the object (take $\pi = 2.14$)	
	Find the volume of the object (take $n = 3.14$)	
	smallest such box.	
5.	Aahana went to a store and there she saw a beautiful spherical table lamp with	4
	wooden stand. She noticed that the wooden stand is made up of 6 identical	
	cuboidal blocks each having dimensions 7cm x 1cm x 1cm. She wants to paint	
	it with golden colour. Help her in finding	
	(a) The volume of wood used	
	(b) Surface area of stand to be painted.	

	(c) If cost of painting is 50 paise per sq. meter, then find the total cost of	
	painting.	
6.	The diameter of a cylindrical roller is 90 cm and it is 110 cm long. If it takes 560 complete revolutions to level a children's playground, then what will be the cost of levelling the playground at the rate of ₹5 per square metre.	4
7.	A toy is in the form of a hemisphere surmounted by a right circular cone of the same base radius as that of the hemisphere. If the radius of base of the cone is 21 cm and its volume is 2/3 of the volume of the hemisphere, calculate the height of the cone and the surface area of the toy.	4
8.	From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm2. [Use π =22/7]	4
9.	On a Sunday, your Parents took you to a fair. You could see lot of toys displayed, and you wanted them to buy a RUBIK's cube and strawberry ice-cream for you. Observe the figures and answer the questions:-	4

		1
	1. The length of the diagonal if each edge measures 6cm is	
	a) $3\sqrt{3}$ b) $3\sqrt{6}$ c) $\sqrt{12}$ d) $6\sqrt{2}$	
	2. Volume of the solid figure if the length of the edge is 7cm is	
	a)256 cm ³ b) 196 cm ³ c) 343 cm ³ d) 434 cm ³	
	3 . What is the curved surface area of hemisphere (ice cream) if the base radius is 7cm?	
	a) 309 cm^2 b) 308 cm^2 c) 803 cm^2 d) 903 cm^2	
	4 . The total surface area of cone with hemispherical ice cream if the radius is 7cm and the height of the cone is 24 cm	
	a) 858 cm ² b) 885 cm ² c) 588 cm ² d) 855 cm ²	
10.	Rahul and Rohit have 12 and 8 cions respectively. Each of radius 3.5 cm and thickness 0.5 cm . They place their coins one above the other to form solid cylinder .	4
	 Based above information answer the following questions : Curved surface area of the cylinder made by Rahul is a) 144 cm² b) 132 cm² c) 154 cm² d) 142 cm² The ratio of the curved surface area of the cylinder made by Rahul and Rohit 2:5 b) 3:2 c) 1:2 d) 2:7 The volume of the cylinder made by Rohit is a) 154 cm³ b) 144 cm³ c) 132 cm³ d) 142 cm³ When two coins are shifted from Rahul's Cylinder to Rohit's cylinder then Volume of Rahul's Cylinder > volume of Volume of Rohit's Cylinder > volume of 	

	Rahul's cylinder.	
	(c) Volume of Rahul's Cylinder = volume of	
	Rohit's cylinder	
	(d) None of these .	
11.	A factory manufactures 120000 pencils daily. The pencils are cylindrical in shape each of length 25 cm and circumference of base as 1.5 cm. Determine the cost of colouring the curved surfaces of the pencils manufactured in one day at $\overline{2} 0.05$ new day.	4
- 10	X 0.05 per dm .	
12.	Water is flowing at the rate of 15 kmh ⁻¹ through a pipe of diameter 14 cm into a cuboidal pond which is 50 m long and 44 m wide. In what time will the level of water in pond rise by 21 cm?	4
13.	Some students of a school reached at an adventure camp for jungle treking. At this camp, team operator served some students with fruit juice in a cylindrical glass and some students in a hemispherical cup whose dimensions are shown below.	4
	a = 7 cm a = 7 cm, n = 10.5 cm	
	Write the answer of the following questions:	
	i) The volume of cylindrical glass is	
	(a) 295.75 cm^3 (b) 7415.5 cm^3 (c) 384.88 (c) 384.88	
	ii) The volume of hemispherical cup is	
	a) 179.67 cm^3 (b) 89.83 cm^3 (c) 172.25 cm	

	3 (d) 210.60 cm 3	
	iii) Which container had more juice and how much?	
	a) hemispherical cup, 195 cm ³ (b) cylindrical glass, 207 cm ³	
	(c) hemispherical cup, 280.85 cm ³ (d) cylindrical glass, 314.42 cm ³	
14.	On a Sunday, you are going with your parents to your uncle's house. A room of this house is 8 m long, 4.5 m wide and 2.8 m high. It has one door 1.4 m wide and 2 m high with a semi- circular ventilator and two rectangular windows2 m by 1.5 m each as shown in the given figure:	4
	i) What is the area of inner four walls?	
	a) 70 m ² (b) 100 m ²	
	c) 35 m ² (d) 140 m ²	
	ii) The area of semi circular ventilator is	
	a) 70 m^2 (b) 0.77 m ²	
	c) 0.70 m^2 (d) 7.7 m^2	
	iii) The cost of white washing the inner four walls of the room at the rate of Rs 10 per square cm	
	a) Rs 660.40 (b) Rs 892.50	
	c) Rs 604.30 (d) Rs 1000	
15.	The Great Stupa at Sanchi is one of the oldest stone structures in India, and an important monument of Indian Architecture.	4

It was originally commissioned by the emperor Ashoka in the 3rd century BCE. Its nucleus was a simple hemispherical brick structure built over the relics of the Buddha. It is a perfect example of combination of solid figures. A big hemispherical dome with a cuboidal structure mounted on it. (Take $\pi = 22/7$)

	(i) Calculate the volume of the homispherical dama if the height of the doma is	
	21 m –	
	a) 19404 cu. m b) 2000 cu .m	
	c) 15000 cu. m d) 19000 cu. m	
	(ii) The formula to find the Volume of Sphere is-	
	a) $2/3 \pi r^3$ b) $2/3 \pi r^3$ c) $4 \pi r^2$ d) $2 \pi r^2$	
	(iii)The cloth require to cover the hemispherical dome if the radius of its base	
	is 14m is	
	a) 1222 sq. m b) 1232 sq. m	
	c) 1200 sq. m d) 1400 sq. m	
	(IV) The total surface area of the combined figure i.e. hemispherical dome with	
	a)1200 sg m b) 1232 sg m	
	c) 1392 sq. m d) 1932 sq. m	
16.	On a Sunday, your parents took you to a fair. You could see a lot of toys	4
	displayed, and you wanted them to buy a RUBIK's cube and strawberry ice-	
	cream for you.	
	(i)The length of the diagonal if each edge measures 6cm is:	
	(a) $3\sqrt{3}$ (b) $3\sqrt{6}$ (c) $\sqrt{12}$ (d) $6\sqrt{3}$	

	 (ii) Volume of the solid if the length of the edge is 7cm: (a) 256cm³ (b) 196cm³ (c) 343cm³ (d) 434cm³ (iii) What is the CSA of hemisphere (ice-ceam) if the base radius is 7cm? (a) 309cm² (b) 308cm² (c) 803cm² (d) 903cm² (iv)Slant height of a cone if the radius is 7cm and the height is 24cm. (a) 26cm (b) 25cm (c) 52cm (d) 62cm 	
17.	The Great Stupa at Sanchi is one of the oldest stone structures in India, and an important monument of Indian Architecture. It was originally commissioned by the emperor Ashoka in the 3rd century BCE. Its nucleus was a simple hemispherical brick structure built over the relics of the Buddha. It is a perfect example of combination of solid figures. A big hemispherical dome with a cuboidal structure mounted on it. (Take $\pi = 22/7$)	4
18.	 On a Sunday, your Parents took you to a fair. You could see lot of toys displayed, and you wanted them to buy a RUBIK's cube and strawberry ice-cream for you. Observe the figures and answer the questions:- i) The length of the diagonal, if each edge measure 6 cm, is: a) 3√3 cm b) 3√6 cm c) 2√3 cm d) 6√3 cm ii) Volume of the solid figure, if the length of the edge is 7 cm, is: a) 256cm³ b) 196cm³ c) 343cm³ d) 434cm³ iii) What is the curved surface area of hemisphere if the base radius is 7 cm? a) 309cm² b) 308cm² c) 803cm² d)903cm² 	4
19.	An icecream seller sells his icecreams in two ways: (A) In a cone of $r = 5$ cm, $h = 8$ cm (B) In a cup in shape of cylinder with $r = 5$ cm, $h = 8$ cm	4

	Type 'A' Type 'B' He charges the same price for both but prefers to sell his icecream in a cone. (a) Find the volume of the cone. (b)Find the volume of the cup. (c) Which out of the two has more capacity?	
20.	To make the learning process more interesting, creative and innovative, Amayras class teacher brings clay in the classroom, to teach the topic - Surface Areas and Volumes. With clay, she forms a cylinder of radius 6 ern and height 8 cm. Then she moulds the cylinder into a sphere and asks some questions to students.	4
	(i) The radius of the sphere so formed is	
	(a) 4 cm (b) 6 cm (c) 7 cm (d) 8 cm (ii) The volume of the sphere so formed is	
	(a) 905.14 cm ³ (b) 903.27 cm ³ (c) 1296.5 cm ³ (d) 1156.63 cm ³ (iii) Find the ratio of the volume of sphere to the volume of cylinder.	
	(a) 2:1 (b) 1:2 (c) 1:1 (d) 3: 1	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	Let the height of cylinder $= 2h$	4
	Radius of base = h	
	$\pi \times h^2 \times 2h + \frac{2}{3} \pi \times h^3 = 1408/21$	
	h = 2cm	
	height of cylinder = 4 m	
2.	Let the height of the drum be h.	4
	Volume of the drum = volume of the cylinder + volume of the sphere	
	$\pi 3^{2}h = (\pi 3^{2} \times 8 + 4/3 \pi 3^{3}) cm 3 \Rightarrow h = (8 + 4)cm \Rightarrow h = 12cm$	

3.	i)25cm	4
	ii)550cm ² ,1232cm ³	
	iii)1056cm ²	
4.	i)V=volume of cylinder+volume of sphere	4
	$=\pi r^{2}h + 4/3 \pi r^{3}$	
	$=\pi r^{2}(h+2/3 r)$	
	$=3.14 \times 12.5 \times 12.5(35 + 2/3 \times 12.5)$	
	=21260.42cm ³	
	ii)v of the box=lbh= $60 \times 25 \times 25 = 37500$ cm ³	
5.	Volume of wood used = $6 \times (7 \times 1 \times 1) = 42 \text{ cm}^3$	4
	Surface area to be painted = $6 [3(7 \times 1) + 1 \times 1 + 6 \times 1) = 168 \text{ cm}^2$	
	Cost of painting = 0.50 x 168 = Rs 84	
6.	Area = $2\pi rh$ = 2×3.14×45×110 = 31086 cm ² or 3.1086 m ² (2)	4
	Area levelled in 560 revolutions = Area \times 560 revolutions = 17408160 cm ²	
	or 1740.82 m^2 (1)	
	Cost of lovelling - Total area x E par $m^2 - 17408160 \times E 10000 \text{ or } 1740.82$	
	$\frac{1}{1000} = \frac{1}{1000} = 1$	
	$\times 500 = \text{Rs. 8/0410}$ (1)	
7.	Radius of the base of cone, $r = 21$ cm	4
	Let 'h' is the height of cone. Then,	
	Volume of cone = $\frac{2}{2}$ Volume of hemisphere	
	$\Rightarrow \qquad \frac{1}{2}\pi r^2 h = \frac{2}{2} \times \frac{2}{2}\pi r^3$	
	3 3 3 4 4	
	\Rightarrow $h = \frac{1}{3}r$	
	Height of cone $h = \frac{4}{5} \times 21 = 28 \text{ cm}$	
	\Rightarrow Height of cone, $n = \frac{3}{3} \times 21 = 20$ cm	
	\therefore Slant height of cone, $l^2 = h^2 + r^2$, where l is the slant height of cone	
	$= (28)^2 + (21)^2$	
	= 784 + 441 = 1225	
	$\Rightarrow \qquad \therefore l = \sqrt{1225} = 35 \text{ cm}$	
	Surface area of the toy = Curved surface area of cone $+$	
	$= \pi r l + 2\pi r^2$	
	$\frac{22}{22}$ · · · · · · · · · · · · · · · · · · ·	
	$= \frac{1}{7} \times 21 \times 35 + 2 \times \frac{1}{7} \times 21 \times 21$	
	$= 2310 + 2772 = 5082 \text{ cm}^2$	

8.		4
	1.4 cm 2.4 cm	
	Given that, Height (<i>h</i>) of the conical part = Height (<i>h</i>) of the cylindrical part = 2.4 cm Diameter of the cylindrical part = 1.4 cm Therefore, radius (<i>r</i>) of the cylindrical part = 0.7 cm Slant height (<i>l</i>) of conical part = $\sqrt{r^2 + h^2}$ $=\sqrt{(0.7)^2 + (2.4)^2} = \sqrt{0.49 + 5.76}$ $=\sqrt{6.25} = 2.5$ Total surface area of the remaining solid will be = CSA of cylindrical part + CSA of conical part + Area of cylindrical base $= 2\pi rh + \pi rl + \pi r^2$ $= 2 \times \frac{22}{7} \times 0.7 \times 2.4 + \frac{22}{7} \times 0.7 \times 2.5 + \frac{22}{7} \times 0.7 \times 0.7$ $= 4.4 \times 2.4 + 2.2 \times 2.5 + 2.2 \times 0.7$	
	$=10.56 + 5.50 + 1.54 = 17.60 \text{ cm}^2$	
	The total surface area of the remaining solid to the nearest cm ² is 18 cm ²	
9.	1. The length of the diagonal if each edge measures $6cm = \sqrt{36 + 36}$ = $\sqrt{2 \times 36} = 6\sqrt{2}$ Ans : (d) 2. Volume of the solid = $7 \times 7 \times 7$ cm ³ = 343 cm ³ Ans : (c)	4
	3. curved surface area of hemisphere = $2\pi r^2 = 2 \times \frac{22}{7} \times 7 \times 7$ cm ² = 308 cm ²	
	Ans : (b) 4. Slant height of the cone = $\sqrt{24 \times 24 + 7 \times 7}$ cm = $\sqrt{576 + 49}$ cm = $\sqrt{625}$ cm = 25 cm The total surface area of cone with hemispherical ice cream = CSA of hemisphere + CSA of cone = $2\pi r^2 + \pi r l = \pi r (2r + l)$ = $\frac{22}{7} \times 7 \times (2 \times 7)$ + 25) cm ² Ans : (a)	
10.	1. Curved surface area of the cylinder made by Rahul = 2π rh	4
	$= 2 \times \frac{22}{7} \times 3.5 \times 0.5 \times 12 \text{ cm}^2 = 44 \times 0.25 \times 12 \text{ cm}^2 = 132 \text{ cm}^2$ Ans : (b) 2. The ratio of the curved surface area of the cylinder made by Rahul and Rohit:	
	Curved surface area of the cylinder made by Rohit = 2π rh	

	$=2\times\frac{22}{\pi}\times 3.5\times 0.5\times 8 \text{ cm}^2=44\times 0.25\times 8 \text{ cm}^2=88 \text{ cm}^2$	
	Required ratio $-\frac{132}{132} - \frac{3}{2} - 3 - 3 \cdot 2$	
	Area (h) $\frac{1}{88} = \frac{1}{2} = 5.2$	
	Ans: (b) $21 \frac{22}{2} 25 25 25 25$	
	3. The volume of the cylinder made by Rohit = $\pi r^2 h = \frac{\pi}{7} \times 3.5 \times 3.5 \times 0.5 \times 8$	
	cm ³	
	$= 22 \times 0.5 \times 3.5 \times 0.5 \times 8 \text{ cm}^3 = 11 \times 14 \text{ cm}^3 =$	
	154 cm^3	
	Ans: (a)	
	4. When two coins are shifted from Rahul's cylinder to Rohit's	
	cylinder then:	
11	Ans: (c) Volume of Rahul's Cylinder = volume of Rohit's cylinder.	4
11.	ANS: Given, pencils are cylindrical in shape.	4
	Length of one pencil = 25 cm	
	and circumference of base = 1.5 cm 15×7	
	$r = \frac{1.5 \times 7}{22 \times 2} = 0.2386 \text{cm}$	
	now CSA of one pencil= 2π rh= $2x(22/7)x02386x25=37.49$ cm ³	
	$=(37.49/100) \mathrm{dm}^3$	
	Therefore CSA of 1200 pencils=0.375x12000=45000dm ³	
	Cost of colouring 1 dm ³ CSA of pencils manufactured in one day=₹ 0.05	
	Cost of colouring 45000 dm curved surface = ₹ 2250	
12.	ANS: Given, length of the pond= 50 m and width of the pond = 44 m	4
	Depth required of water=21cm=(21/100)m	
	Volume of water in the pond= $[50x44x(21/100)]^3$ =462m ³	
	Also given radius of pipe=7cm= $(7/100)$ m	
	And speed of water flow in	
	$Ih = \pi R^{2} H = [(22/7)x(7/100)x(7/100)x(7/100)x(1500)] = 231m^{3}$	
	14 cm	
	Pipe	
	44 m	
	Tank	
	50 m Since 221 m^3 of water falls in the pend in 1 h	
	Since 25111 of water fails in the point in 1 II. So $1m^3$ water fails in the point in $(1/221)h$	
	So fill water falls if the point in $(1/231)$ w/62]b-2b	
	Hence, the required time is 2 h	
13	i) d) 404.25 cm^3	1+1+2-1
	ii) b) 89.83 cm ³	1,1,5-4
	iii) cylindrical glass, 314.42 cm ³	
14.	i) Area of four walls = $2(1 + b) X h = 2(8 + 4.5) X 2.8 = 70$ sq. Cm	1+1+2=4
	ii) Area of semi circular ventilator = $\frac{1}{2} \prod r^2 = \frac{1}{2} X \frac{22}{7} X 0.7 X 0.7 = 0.77$ sq. m	
	iii) Area of door = $1 X b = 2 X 1.4 = 2.8 sq. M$	

	Area of two windows = $2 X(2 X 1.5) = 6 sq. M$	
	Area to be white-washed = $70 - (2.8 + 0.77 + 6) = 60.43$ sq. M	
	Cost of white washing = Rs $10 \times 60.43 = Rs 604.30$	
15.	(i)a (ii)b (iii)b (iv)c	4
16.	(i)d, length of the diagonal = $\sqrt{3} \times \text{side} = \sqrt{3} \times 6 = 6\sqrt{3}$ (ii)c, Volume of cube = $(\text{side})^3 = (7)^3 = 343 \text{ cm}^3$ (iii)b, CSA of hemisphere = $2 \pi r^2 = 2 \times 22/7 \times 7 \times 7 = 308 \text{ cm}^2$ (iv)b, Slant height of cone , $I = \sqrt{r^2 + h^2} = \sqrt{7^2 + 24^2} = \sqrt{625} = 25 \text{ cm}$	4
17.	(i) a (ii) a (iii) d	4
18.	(i) d (ii) c (iii) b	4
19.	Volume of type 'A' Volume of cone + Volume of hemisphere $1/3x22/7x r^2 h + 2/3 x22/7 x r^3 = 22/7x r^2 (h/3+2r/3)$ =22/7x5x5(8/3+10/3) =22/7x25x(18/3) =22/7x25x6 $=3300/7=471.43 cm^3$ Volume of type B = volume of cylinder =22/7x 5x5x8 $=4400/7=628.57 cm^3$ (a) :· Volume of a cone = 471.43 cm ³ (b)Volume of a cup = 628.57 cm ³ (c) Cup has more capacity.	4
20.	(i) (b) Since, volume of sphere = volume of cylinder $\Rightarrow 4/3\pi R3=\pi r2h$ where R, r are the radii of sphere and cylinder respectively. $\Rightarrow R3=6\times6\times8\times3/4=(6)3\Rightarrow R=6 \text{ cm}=>R=6 \text{ cm}$ \therefore Radius of sphere = 6 cm (ii) (a) Volume of sphere =4/3\pi R3 =4/3×22/7×6×6×6=905.14 cm3 (iii) (c) Volume of sphere = Volume of cylinder \therefore Required ratio = 1 : 1	4