

Final Term Maths MIND CURVE Practice Paper Series 2024-25

PRACTICE PAPER 03

By Deepika Bhati Teaching Mathematics Passionately since 2009

S no	Syllabus Covered	Marking Scheme			
1.	Unit 1 Number system	10			
2.	Unit 2 Algebra	20			
3.	Unit 3 Coordinate Geometry	04			
4.	Unit 4 Geometry	27			
5.	Unit – 5 Mensuration	13			
6.	Unit – 6 Statistics & Probability	06			

Note: Students/Teachers can refer to this Sample Paper for practice purpose. However, students may find or experience different exam pattern as syllabus or marking scheme may vary school to school.

MM:80

GENERAL INSTRUCTIONS

TIME:3Hr

READ CAREFULLY ALL INSTRUCTIONS

V.

1. This Question Paper has 5 Sections A, B, C, D and E.

- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub parts of the values of 1, 1 and 2 marks each respectively.
- All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.
- 9. This paper consists of 38 questions.
 - a. Write your answers neatly and legibly.
 - b. Ensure you have not left any question unanswered

CLASS IX FINAL TEST – 03 (2024-25)

	Section A						
1	Consists of 20 questions of 1 mark each.	1					
1	(a) yes (b) no	-					
	(c) cannot be explained (d) none of these						
2	The length of each side of an equilateral triangle of area $4\sqrt{3}$ sq.cm is	1					
	(a) 4 cm (b) $\frac{\sqrt{3}}{2}$ (d) 2 cm						
	(a) 4cm (b) $\frac{1}{\sqrt{3}}$ cm (c) $\frac{1}{4}$ (d) 5cm						
3	The coefficient of x^2 in $4x^2 + 3x + 1$ is:	1					
-	$ \begin{array}{c} (a) \ 1 \\ \hline \\$	1					
4	(a) 0 (b) 1	L L					
	(d) 0 (D) 1 (d) do not defined						
5	Point (3, 4) lies on the graph of the equation $3y = kx + 7$. The value of k is:	1					
-	$(a)^{\frac{4}{2}}$ (b) $\frac{5}{2}$ (c) 3 (d) $\frac{7}{2}$						
6	$(a)_3$ $(b)_3$ $(c)_3$ $(a)_3$	1					
0		L					
	$l_1 l_2$						
	45						
	(a) 80° (b) 100° (c) 110° (d) 70°						
7	Which of the following is a polynomial?	1					
	(a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{x^{\frac{3}{2}}}{2}$ (d) none of these						
	$(x)_{x}$ $(x)_{x^{2}}$ $(x)_{\sqrt{x}}$ $(x)_{x}$						
8	The measure of an angle is 5 times its complement. The angle measures :	1					
	(a) 25° (b) 35° (c) 65° (d) 75°						
9	The mid – value of a class interval is 42. If the class size is 10, Then the upper and the lower	1					
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$						
	(a) $37 \text{ and } 47$ (b) $47 \text{ and } 37$ (c) $375 \text{ and } 475$ (d) $475 \text{ and } 375$						
10	The sides of a triangle are 122 m 22 m and 120 m respectively. The area of the triangle is	1					
	(a) 1320 sg.m (b) 1300 sg.m						
	(c) 1400 sg.m (d) 1420 sg.m						
11	In a triangle if the measure of an angle is equal to sum of the measures of the						
	remaining two angles, then the triangle is :						
	(a) right angled triangle (b) acute angled triangle						
	(c) obtuse angled triangle (d) equilateral triangle						
12	Congruent arc of the circle subtend :	1					
	(a) Different angle at the centre (b) Same angle at the centre						
	(c) Both a and b (d) None of these						
13	In the given figure , if chords AB and CD of the circle intersect each other at right angles .	1					
	A B						
	(a) 75° (b) 90° (c) 45° (d) 60°						
J		1					

 (a) parallel chords (b) perpendicular chords (c) equal chords (d) different chords 15 The total surface area of the cube of side 2 cm is : (a) 24cm² (b) 0.0024 m² (c) Both a and b (d) none of these 16 Quadrilateral becomes square if (a) Diagonals bisect at 90 degrees 	1			
(a) parallel chords (b) perpendicular chords (c) equal chords (d) different chords 15 The total surface area of the cube of side 2 cm is : (a) 24cm ² (b) 0.0024 m ² (c) Both a and b (d) none of these 16 Quadrilateral becomes square if (a) Diagonals bisect at 90 degrees	-			
15 The total surface area of the cube of side 2 cm is : (a) 24cm ² (b) 0.0024 m ² (c) Both a and b (d) none of these 16 Quadrilateral becomes square if (a) Diagonals bisect at 90 degrees				
15 The total surface area of the cube of side 2 cm is : (a) 24cm ² (b) 0.0024 m ² (c) Both a and b (d) none of these 16 Quadrilateral becomes square if (a) Diagonals bisect at 90 degrees	1			
(a) 24cm ² (b) 0.0024 m ² (c) Both a and b (d) none of these 16 Quadrilateral becomes square if (a) Diagonals bisect at 90 degrees	1			
(c) Both a and b (d) none of these 16 Quadrilateral becomes square if (a) Diagonals bisect at 90 degrees				
16 Quadrilateral becomes square if				
(a) Diagonals bisect at 00 degrees	1			
(a) Diagonais disect at 30 degrees				
(b) Diagonals are equal				
(c) Equal diagonal bisect at 90 degrees				
(d) Adjacent sides are equal				
17 If in a object there are 15 cubes and side of the each cube is 3 cm then the volume of the	ie 1			
whole object is :				
(a) 27cm ³ (b) 405cm ³				
(c) 40.5cm ³ (d) none of these				
18 Any point on line x = y is of the form:	1			
(a) $(k, -k)$ (b) $(0, k)$				
(c) $(k, 0)$ (d) (k, k)				
19 Assortion (A): The sides of a triangle are in the ratio of 25 \cdot 14 \cdot 12 and its perimeter is 5	10 1			
m Then the greatest side is 250 cm	10			
Reason(R) : Perimeter of a triangle = $a + b + c$, where a,b,c are sides of a triangle.				
(a) Both assertion and reason are true and reason is the correct explanation of assertion	n			
(b) Both assertion and reason are true but reason is not the correct explanation of				
assertion				
(c) Assertion is true but reason is false.				
(d) Assertion is false but reason is true.				
20 $1\frac{12}{13}$	1			
Assertion(A) : the Decimal fraction of $\frac{12}{125}$ is 0.096				
Reason(R) : the Decimal fraction of $\frac{1}{9}$ is 0.111.				
(a) Both assertion and reason are true and reason is the correct explanation of assertion	n			
(b) Both assertion and reason are true but reason is not the correct explanation of				
assertion.				
(c) Assertion is true but reason is false.				
(d) Assertion is false but reason is true.				
AN EDUCA Section B				
Consists of 5 questions of 2 marks each				
· · · · · · · · · · · · · · · · · · ·	2			
21 State Euclid,s fifth postulate .	2			
21 State Euclid,s fifth postulate . 22 Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$				
21State Euclid,s fifth postulate .22Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or				
21 State Euclid,s fifth postulate . 22 Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{10} = 3\sqrt{2} - a\sqrt{3}$				
21 State Euclid,s fifth postulate . 22 Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$.				
21 State Euclid,s fifth postulate . 22 Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$. 23 In the given figure , AC bisects $\angle A$ and $\angle C$. If AD = 5cm find AB.	2			
21 State Euclid,s fifth postulate . 22 Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$. 23 In the given figure , AC bisects $\angle A$ and $\angle C$. If AD = 5cm find AB.	2			
21 State Euclid,s fifth postulate . 22 Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$. 23 In the given figure , AC bisects $\angle A$ and $\angle C$. If AD = 5cm find AB.	2			
21 State Euclid,s fifth postulate . 22 Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$. 23 In the given figure , AC bisects $\angle A$ and $\angle C$. If AD = 5cm find AB.B AB C	2			
21 State Euclid,s fifth postulate . 22 Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$. 23 In the given figure , AC bisects $\angle A$ and $\angle C$. If AD = 5cm find AB.B AB C	2			
21State Euclid,s fifth postulate .22Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$.23In the given figure , AC bisects $\angle A$ and $\angle C$. If AD = 5cm find AB.BBABS cm	2			
21State Euclid,s fifth postulate .22Show that $p - 1$ is a factor of $p^{10} + p^8 + p^6 - p^4 - p^2 - 1$ Or Find the value of $a : \frac{6}{3\sqrt{2} - 2\sqrt{3}} = 3\sqrt{2} - a\sqrt{3}$.23In the given figure , AC bisects $\angle A$ and $\angle C$. If $AD = 5$ cm find AB.BBABC5 cmD24Eind the value of x	2			

	A							
	м	×						
	45°	20°						
- 25		D		f : t = a = a = a : t = a	:			2
25	The height of a conical vessel is 3.5 cm. If its capacity is 3.3 lites of milk . Find the diameter of its base							2
	or its base .			or				
	The radius and	slant height	of a cone are	e in the ratio	4:7 .If its curv	ved surface a	ara is 792	
	cm ² ,find its rad	lius.(use π =	$(\frac{22}{7})$					
				Section C				
	1	Co	onsists of 5 q	uestions of 3	marks each.			
26	The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is					ts base is	3	
	5.2.1 ind the are		iligie.	or				
	The perimeter	of a triangle	is 480 meter	s and its side	s are in the r	atio of 1:2:3	.Find the	
	area of the tria	ngle ?					1	
27	In each of the figures given below ,AB II CD .Find the value of x ⁰ in each case.							3
	A	В						
		35°						
		$\nabla V_{x^{\nu}}$						
		650						
	c ·	<u> </u>						
	-	ŦN	TTT	Or	111			
	In the given figure ,AB II CD .Prove that $p + q - r = 180$.							
	A E	В			1 Y			
	p^{ω}		17 1	LIL	1 1			
		q° F	ITT MIZ	DEVO	MID			
		r°	H I INA	BEAU	INU.			
	C G	D			A 1.87 F. F. F.			
		4.)			I. IN	STI	THE	
28	If (m – 2 , 2m +	F1) lies on e	$\frac{1}{3+\sqrt{7}}$	3y – 10 = 0, til	nd m.			3
	Find the values	of a and b i	$f \frac{3+\sqrt{7}}{3-\sqrt{7}} = a + \frac{1}{3-\sqrt{7}}$	$b\sqrt{7}$.				5
30	A die thrown 10	000 times wi	th this follow	ving frequenc	ies for the οι	itcomes 1,2,	3,4,5 and as	3
	given below .D	raw the bar	graph of the '	ioliowing dat	а. л		6	
	Frequency	175	125	250	4 150	100	200	
31	Factorise : y ³ +	$y^2 - 4y - 4$.						3
	· ·	-		Section D				
		C	onsists of 4 q	uestions of 5	marks each.			
32	If $x = \frac{(\sqrt{2}+1)}{(\sqrt{2}-1)}$ ar	rd y = $\frac{(\sqrt{2} - 1)}{(\sqrt{2} + 1)}$), find the val	ue of $x^2 + y^2$	+ xy.			5
	(V2-1)	(1 + 2)	,	-				-
				Or				
	Simplify $\cdot \frac{7\sqrt{3}}{7\sqrt{3}}$	2√5	3√2	Or				
	Simplify : $\frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}}$	$\frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}}$	$\frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}.$	Or				

