KENDRIYA VIDYALAYA SANGATHAN PATNA REGION Model Paper(SEE) (2024-25) CLASS- IX

Time allowed:- 3 Hrs.

Max. Marks: 80

General Instructions:

1. This question paper has 5 sections A,B,C,D and E.

2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.

3.Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.

4.Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.

5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.

6. Section E has 3 Case Based integrated units of assessment (4 marks each) with

sub-parts of the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of marks 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2marks questions of Section E.

8.Draw neat figures wherever required. Take π =22/7 wherever required if not stated.

Section-A

Section A consists of 20 questions of 1 mark each.

Section A consists of 20 questions of 1 mark each. 1. Rational number 0.6 is equal to	
(a) $\frac{6}{10}$	(b) $\frac{2}{3}$
(c) $\frac{3}{10}$	(d) None of these
2. The value of $32^{-2/5}$ is	
(a) $\frac{1}{2}$	(b) 4
$(c)\frac{1}{4}$	(d) 64
3. Zeros of the polynomial $P(x)=(x+8)(x-10)$ are: (a) -10,8	(b) -8,-10
(c) 8,104. In between any two numbers, there are:	(d) -8,10
(a) Only one rational number	(b.) Two rational numbers
(c) Infinite rational numbers 5. The degree of polynomial $P(x) = X^4+3x^3+3x^2+x+1$ is:	(d.) No rational number
(a) 0	(b) 4
(c) 3 6. The coefficient of x^2 in $3x^3+2x^2-x+1$ is:	(d) More than 4
(a) 1 (c) 3 7. $x^2 - 3x + x^3$ is polynomial.	(b) 2 (d) -1
 (a) Cubic (c) Linear 8. The solution of equation x-2y = 4 is: (a) (0,2) 	(b) Quadratic (d)None of the above (b) (2,0)
(c) (4,0)	(d)(1,1)

9. Find the value of k, if x = 1, y = 2 is a solution of the equation 2x + 3y = k.

(a) 5	(b) 6
(c)7	(d) 8
10. Lines which are parallel to the same line are	to each other
(a) Coincident	(b) Perpendicular
(c) Parallel11. The longest chord of the circle is:	(d) Equal
(a) Radius	(b) Arc
(c) Diameter12. Three angles of a quadrilateral are 75°, 90° and 75°	(d) Segment ^o . The fourth angle is
(a) 90°	(b) 95°
(c) 105°13. Two angles whose sum is equal to 90° are called:	(d) 120°
(a) Vertically opposite angles	(b) Supplementary angles
(c) Complementary angles14. The sides of a parallelogram are 100 m each and th The area of a parallelogram is:	(d) Linear pair angles the length of the longest diagonal is160m
(a) 9600 m ²	(b) 9000 m ²
(c) 9200 m ²	(d) 8800 m ²
15. The perimeter of an equilateral triangle is 60 m. The	ne area is:-
(a) $10\sqrt{3} \text{ m}^2$	(b) $15\sqrt{3} \text{ m}^2$
(c) $20\sqrt{3}$ m ²	(d) $100\sqrt{3} \text{ m}^2$
16. The curved surface area of a right circular cylinder of the base is:	of height 14 cm is 88 cm ² . The diameter
 (a) 2 cm (c) 4 cm 17. The radius of a hemispherical balloon increases from to it. The ratio of the surface areas of the balloon in 	
(a) 1:4	(b) 1:3
(c) 2:3 18. Find the range of the following data: 25,18,20,22,1	d) 2:1 6, 6,17,15,12,30,32,10,19,8,11,20.
(a) 10	(b) 15
(c) 18	(d) 26

Direction: In the question number 19 and 20,a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option:

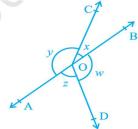
- Statemen A (Assertion): The class mark of the class interval (90-120) is 105.
 Statement R(Reason): The difference of the highest and the lowest values in the data is called the Range.
 - (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

- (b) Both assertion (A) and reason (R) are true and reason (R) is the not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- **20.** Statemen A (Assertion): Degree of the polynomial $4x^6-3x^2+9x-1$ is 6.

Statement R(Reason): The highest power of the variable in a polynomial is called the degree of the polynomial.

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true and reason (R) is the not the correct explanation of assertion (A).
- (c) Assertion (A)is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

Section – B

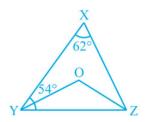

Section B consists of 5 questions of 2 marks each.

21. Rationalise the denominators of $\frac{1}{\sqrt{6-\sqrt{5}}}$

OR Simplify: - $2^{2/3} \ge 2^{1/3} / 2^{-1}$

22. Factorise: - 4y²-4y+1.

23. In the given figure, if x+y = w+z, then prove that AOB is a line.


- **24.** The angles of quadrilaterals are in the ratio 3: 5: 9: 13. Find all the angles of the quadrilaterals.
- 25. Find the volume of right circular cone with radius 6 cm, height 7 cm.

Section – C Section C consists of 6 questions of 3 marks each.

26.Factorise the following: - $-125a^3+225a^2-135a+27$

27. Find two solutions for the following equation: 4x+3y=12

28. In the given figure, $\angle X = 62^\circ$, $\angle XYZ = 54^\circ$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OZY$ and $\angle YOZ$.

29. Show that the line segments joining the mid points of the consecutive sides of a quadrilateral form a parallelogram.

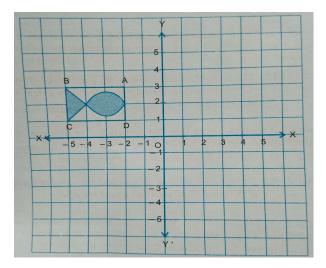
OR

ABC is an isosceles triangle with AB = AC. Draw $AP \perp BC$ to show that $\angle B = \angle C$.

30. Prove that equal chords of a circle subtend equal angles at the centre.

31. Sides of a triangle are in the ratio of 12: 17: 25 and its perimeter is 540cm. Find its area.

Section – D Section D consists of 4 questions of 5 marks each.


32. Simplify each of the following expressions: -(i) $(3+\sqrt{3}) (2+\sqrt{2})$ (ii) $(\sqrt{5} + \sqrt{2})^2$

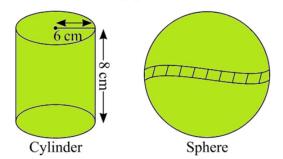
- **33.** Verify that $x^3 + y^3 + z^3 3xyz = \frac{1}{2}(x+y+z)[(x-y)^2 + (y-z)^2 + (z-x)^2]$
- 34. Show that Angles opposite to equal sides of an isosceles triangle are equal.
- **35.** Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Section – E

Case study based questions are compulsory:

36. For maths integrated projects, Sonia crated a symmetrical design on Cartesian plain. She drew a fish in a rectangle ABCD in the 2^{nd} Quadrant as shown in the figure.

Based on the above information answer the following question -


- (i) Find the Sum of abscissa of points A and B.
- (ii) Find the area of rectangle ABCD.
- (iii) What will be the new coordinates of A,B,C and D to draw the reflection of fish in the 3rd Quadrant across x-axis.

Or,

(iii) What will be the new coordinates of A,B,C and D to draw the fish by shifting each vertex of rectangle 5 units to the right.

37. Mr. Kunal, a Mathematics teacher brings some green coloured clay in the classroom to teach the topic 'mensuration'. First, he forms a cylinder of radius 6 cm and height 8 cm with the clay. Then, he moulds that cylinder into a sphere similarly, he moulds the sphere in other different shapes.

Answer the following questions :

(i) Which of the following is not a 3D shape? (a) Cone (c)Rectangle (ii) What is the formula of volume of a sphere? (a) $\frac{2}{3}\pi r^3$ (b) πr^3 (c) $\frac{1}{3}\pi r^3$ (d) $\frac{4}{3}\pi r^3$ (iii) What is the volume of cylindrical shape ? (a) 268π cm³ (c) 36π cm² (b) 288π cm³ (d) 48π cm²

or

(iii) What is the Surface area of moulded sphere?

(a) $144 \pi \text{ cm}^2$ (b) $288 \pi \text{ cm}^2$ (c) $286 \pi \text{ cm}^2$ (d) $143 \pi \text{ cm}^2$

38.The marks of 40 students of a mid-term examination of Mathematics of class IX is shown below:

11,18,38,62,75,42,54,62,58,26,32,35,61,68,72,73,54,17,28,16,32,35,32,38,34,44,65,72,78,15,3 0,32,35,54,62,66,5,19,76,9

(i) What are the minimum and maximum marks obtained?

(ii) Find the range of the data?

(iii) Taking class interval 0-10,10-20 and so on , construct a frequency distribution table.

or,

(iii) How many students got less than 50 marks?

.....