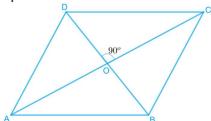
Marking scheme of Class IX Mathematics

Model Paper(SEE) (2024-25)

Q.no	o Answer			
1.	(b) 2/3	1		
2.	(c) 1/4	1		
3.	(d) -8, 10	1		
4.	(c) Infinite rational numbers	1		
5.	(b) 4	1		
6.	(b) 2	1		
7.	(a) Cubic	1		
8.	(c) (4,0)	1		
9.	(d) 8	1		
10.	(c) Parallel	1		
11.	(c) Diameter	1		
12.	(d) 120º	1		
13.	(c) Complementary angles	1		
14.	(a) 9600 m ²	1		
15.	(d) 100√3 m ²	1		
16	(a) 2	1		
17.	(a) 1:4	1		
18.	(d) 26	1		
19.	(b) Both assertion (A) and reason (R) are true and reason (R) is the not the correct explanation of assertion (A).	1		
20.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).			
21.	$\frac{1}{\sqrt{6}-\sqrt{5}} \times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}} = \frac{\sqrt{6}+\sqrt{5}}{(\sqrt{6})^2 - (\sqrt{5})^2} = \frac{\sqrt{6}+\sqrt{5}}{6-5} = \frac{\sqrt{6}+\sqrt{5}}{1} = \sqrt{6}+\sqrt{5}$	2		
	OR			
	$2^{\frac{2}{3} + \frac{1}{3}} / 2^{-1} = 2^{3/3} / 2^{-1} = 2^{1+1} = 2^2 = 4$			
22.	$4y^2-2y-2y+1$	1		
	= 2y(2y-1) -1 (2y-1)			
	= (2y-1) (2y-1)	1		


23.	It can be observed that ,				
	$x+y+z+w = 360^{\circ}(Complete angle)$				
	It is given that ,				
	x+y=z+w				
	∴ x+y+x+y=360°				
	2(x+y)= 360°,x+y=180°,Since x and y form a linear pair,AOB is a line.				
24.	Let the common ratio between the angles be x.Therefore,the angles				
	will be 3x,5x,9x and 13x respectively.				
	As the sum of all interior angles of a quadrilateral is 360°.				
	$3x+5x+9x+13x=360^{\circ}$	1			
	30x=360° x= 12°	1			
	Hence the angles are $3x=3x12=36^{\circ}$				
	5x = 5x12 = 36 $5x = 5x12 = 60^{\circ}$				
	$9x = 9 \times 12 = 108^{\circ}$	1			
	13x = 13 x 12 =156°				
25.	Volume of the Cone = $\frac{1}{3}\pi r^2 h$	1			
	J				
	$=\frac{1}{3}x \frac{22}{7}x 6cm x 6cm x 7cm$				
	= 12cm x 22cm				
	= 264 cm ³	1			
26.	$= (-5a)^3 + 3(-5a)^2 \times 3 + 3(-5a) \times 3^2 + 3^3$	2			
	$ = (-5a + 3)^3 $	1			
27.	Taking $x = 0$, we get $3y = 12$,	1 ½			
	i.e., y = 4.				
	So, (0, 4) is a solution of the given equation.				
	Similarly, by taking $y = 0$,				
	we get $x = 3$. Thus, $(3, 0)$ is also a solution.				

28.	As the sum of all interior angles of a triangle is 180°,		
	Therefore, for△XYZ,		
	$\angle X + \angle XYZ + \angle XZY = 180^{\circ}$		
	62° + 54° + ∠ XZY = 180° ∠ XZY = 180° - 116°		
	$\angle XZY = 64^{\circ}$	1	
	\angle OZY = 64/2=32°(OZ is the angle bisector of \angle XZY)		
	Similarly, \angle OYZ = 54/2= 27°		
	Using angle sum property for $\triangle OYZ$,we obtain		
	$\triangle OYZ + \triangle YOZ + \triangle OZY = 180^{\circ}$		
	27°+△YOZ+32°= 180°		
	△YOZ= 180°- 59°	1	
	$\triangle YOZ = 121^{\circ}$		
29.	D R	1	
	c		
	S Q		
	A B		
	r	2	
	In △ACD,S & R are the mid-point		
	of AD and DC respectively.		
	∴ SR AC & SR=1/2 AC - 1 (from mid point property)		
	Similarly in △ABC,		
	PQ AC & PQ=1/2 AC - 2 (from mid point property)		
	From 1 and 2		
	SR & = PQ		
	5		
	So, PQRS is a parallelogram.		
	OR		
	To Prove: $\angle B = \angle C$		
	Construction : Draw AP ⊥ BC		
	Proof: In right triangle APB and right triangle APC,		
	Hyp . AB = Hyp. AC Given	1	
	VI VI 1		

	Side AP = Side AP Common $\therefore \triangle APB \cong \triangle APC $	2
30.	A O D	
	In ΔAOB and ΔCOD, AB=CD (Given) AO=CO (radius) OB=OD (radius) By S.S.S congruency, ΔAOB≅ΔCOD ⇒∠AOB=∠COD. Proved	1 1 1
31.	Let x be common ratio \therefore Sides of triangle will be: 12x,17x and 25x \Rightarrow Perimeter =540 cm(given) \Rightarrow 12x+17x+25x=540 cm, \Rightarrow 54x=540 cm \Rightarrow x=10 cm \therefore Sides of triangle: a=120 cm, b=170 cm, c=250 cm \Rightarrow 2S=540 \Rightarrow S=270 cm	1
	$A = \sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{270(270-120)(270-170)(270-250)} \text{ cm}^2$ $= \sqrt{270 \times 150 \times 100 \times 20} \text{ cm}^2$	1
	A=9000 cm ²	1

3 2.(i)	$= (3+\sqrt{3})(2+\sqrt{2})$ $= 3(2+\sqrt{2}) + \sqrt{3}(2+\sqrt{2})$ $= 6+3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$	2.5
32.(ii)	$(\sqrt{5} + \sqrt{2})^{2}$ $= (\sqrt{5})^{2} + 2 \cdot \sqrt{5} \cdot \sqrt{2} + (\sqrt{2})^{2}$ $= 5 + 2\sqrt{10} + 2$ $= 7 + 2\sqrt{10}$	2.5
33.	Taking the RHS and evaluating, R.H.S. = $1/2 (x + y + z) [(x - y)^2 + (y - z)^2 + (z - x)^2]$ = $1/2 (x + y + z) [(x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2)]$ = $1/2 (x + y + z) [2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx]$ = $1/2 (x + y + z) (2) [x^2 + y^2 + z^2 - xy - yz - zx]$ = $x[x^2 + y^2 + z^2 - xy - yz - zx] + y[x^2 + y^2 + z^2 - xy - yz - zx] + z[x^2 + y^2 + z^2 - xy - yz - zx]$ = $x^3 + xy^2 + xz^2 - x^2y - xyz - x^2z + x^2y + y^3 + yz^2 - xy^2 - y^2z - xyz + zx^2 + y^2z + z^3 - xyz - yz^2 - xz^2$ On simplifying, = $x^3 + y^3 + z^3 - 3xyz = LHS$	1½ 1½
34.	Figure - Given to prove, construction Proof	1 1 1 2
35.	Given: The diagonals of a <u>quadrilateral</u> bisect each other at right angles. To show that a given quadrilateral is a rhombus, we have to show it is a <u>parallelogram</u> and all the sides are	1

equal.

1

Let ABCD be a quadrilateral, whose diagonals AC and BD <u>bisect</u> each other at the <u>right angle</u>.

So, we have, OA = OC, OB = OD, and \angle AOB = \angle BOC = \angle COD = \angle AOD = 90°.

To prove ABCD a <u>rhombus</u>, we have to prove ABCD is a parallelogram and all the sides of ABCD are equal.

In $\triangle AOD$ and $\triangle COD$,

OA = OC (Diagonals bisect each other)

$$\angle AOD = \angle COD = 90^{\circ}$$
 (Given)

OD = OD (Common)

 $\therefore \triangle AOD \cong \triangle COD$ (By SAS congruence rule)

$$\therefore AD = CD (By \underline{CPCT}) \qquad \dots (1)$$

Similarly, it can be proved that

$$AD = AB \text{ and } CD = BC \dots (2)$$

From Equations (1) and (2), AB = BC = CD = AD

Since opposite sides of quadrilateral ABCD are equal, it can be said that ABCD is a parallelogram. Since all sides of a parallelogram ABCD are equal, it can be said that ABCD is a rhombus.

3

36.	(i) (-2) + (-5	5) = -7		1		
		1				
	(ii) Area =	2				
	(iii) A' (-2,-3	-				
	or					
	(iii) A(3,3)	, B(0,3) , C(0,1) , D(3,1)			
37.	(i) c Recta	1				
	(ii) d 4/3 π	τ r ³		1		
	(iii) b 288	π cm ³		2		
	Or					
	(iii) a 144	π cm ²				
38.	(i) 5 and 78					
	(ii)73			1		
	(iii)			2		
	()	Class Interval	Frequency			
		0-10	2			
		10-20	4			
		20-30	1			
		30-40	10			
		40-50	1			
		50-60	2			
		60-70	5			
		70-80	5			
	Or,					
	(iii) Number of students who got less than 50 marks is					
	18.					
	10.					