
	MARKING SCHEME FOR PRE-BOARD-I SUBJECT MATHEMATICS CLASS-XII	
1.	D [1,2]	1
2.	$C = f(\alpha + \beta)$	1
3.	A Null martix	1
4.	B -6, -4, -9	1
5.	D 0	1
6. 7.	D 1	1
-		-
8.	$C = 6\pi$	1
9.	$C = \frac{1}{\log^3} + c$	1
10.	B √3	1
11.	B 2 sq. unit	1
12.	A $y = \frac{c}{x^2}$	1
13.	$C x^2$	1
14.	B -1	1
15.	B 0	1
16.	C 4	1
17.	C given by corner points of the feasible region	1
18.	$C = \frac{1}{3}$	1
19.	D Assertion is false but reason is true	1
20.	A both Assertion and Reason are true and Reason is the correct explanation	1
	of Assertion	
	Section B	
21.	$\sin \{2(\pi - \cot^{-1}\frac{5}{12})\}$	1/2 1/2
	$-\sin(2tam^{-1}\frac{12}{12})$	/2
	$=$ $\frac{-\sin(2\pi in}{5})$	1
	$= -\sin\left(2\tan^{-1}\frac{12}{5}\right)$ = $-\sin\left(\sin^{-1}\frac{120}{169}\right) = -\frac{120}{169}$	
22.	sin3x	
	$\lim_{x\to 0^-} \frac{1}{\tan 5x}$	1
	$= \lim_{x \to 0^{-}} \frac{\sin 3x}{3x} \times \frac{5x}{\tan 5x} \times \frac{3}{5} = \frac{3}{5}$	4
	$-\lim_{x\to 0^-} \frac{1}{3x} \wedge \frac{1}{\tan 5x} \wedge \frac{1}{5} = \frac{1}{5}$	1
	$RHL = k \Longrightarrow k = \frac{3}{r}$	
23.	2	1/2
20.	$6\log x + 5\log y = 11 \log(x + y)$	1/2
	Diff. Both sides w.r.t. x we get	
	$\frac{6}{x} + \frac{5}{y} = \frac{11}{x+y} + \frac{4y}{y}$	1
	$\implies \dots \implies \stackrel{dx}{\Longrightarrow} \stackrel{dy}{\xrightarrow{dx}} = \left(\frac{y}{x}\right)$	
24.	$\vec{a} \cdot \vec{b} = 0.y - 16 + x = 0 \implies x = 16$	1/2
	$ \vec{a} = \vec{b} \implies 64 + x^2 = y^2 + 4 + 1$	1⁄2 1
	$64+256 = y^2 + 5 \Longrightarrow y = \pm \sqrt{315}$	
		17
	$\overrightarrow{(a+b)^2} = (-\overrightarrow{c})^2 \Longrightarrow a^2 + b^2 + 2\overrightarrow{a}. \overrightarrow{b} = c^2$	1/2 1/2
	$\vec{a}.\vec{b} = 15 \implies 2abcos\theta = 15$	1
	$\cos\Theta = \frac{1}{2} \Longrightarrow \Theta = 60^{\circ}$	

25.	$(\overrightarrow{p+q})X(\overrightarrow{p-q})$	1
	$\overline{l(\vec{p}+\vec{q})X(\vec{p}-\vec{q})l}$	1
	$= (26\hat{i} + 8\hat{j} - 22\hat{k})/\sqrt{1224} = \frac{1}{3\sqrt{34}} (13\hat{i} + 4\hat{j} - 11\hat{k})$	1
	SECTION-C	
26.	Let I ($=b^2$) and 'b' be the length and breadth respectively of the rectangle	1
	\therefore A, the area = $l \times b = b^2 \times b = b^3$	
	$\therefore \ \frac{dA}{dt} = 3b^2 \frac{db}{dt} \Rightarrow 48 = 3b^2 \frac{db}{dt} \ \$ (1) [By the question]	
	But $l = b^2 \Rightarrow \frac{dl}{dt} = 2 b \frac{db}{dt}$ (2)	1
	$\Rightarrow rac{d\ell}{dt} = 2b . \; rac{1}{3b^2} rac{dA}{dt}$	
	$=rac{2}{3b}rac{dA}{dt}$	1
	$\Rightarrow \frac{dl}{dt}\Big _{b=4.5} = \frac{2 \times 48}{3 \times 4.5} = 7.11 \text{ cm/sec}$	
27.	For increasing $f'(x) = \frac{cosx-sinx}{1+(sinx+cosx)^2} > 0$	1
	$\Rightarrow \cos x - \sin x > 0 \Rightarrow x \in (0, \pi/4)$	1
	For decreasing $f'(x) < 0 \Rightarrow cosx < sinx \Rightarrow x \in (\frac{\pi}{4}, \pi)$	1
28.	Put logx = t \Rightarrow x = e ^t \Rightarrow dx = e ^t dt	1
	$I = \int \left(\frac{1}{t} - \frac{1}{t^2}\right) e^t dt = e^t \cdot \frac{1}{t} + C = \frac{x}{\log x} + C$	
29	$\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2} = k \Longrightarrow (x, y, z) = Q(3k-2, 2k-1, 2k+3)$	2
20		1
	P(1,3,3), PQ = $\sqrt{((3k-3)^2 + (2k-4)^2 + 4k^2)} = 5 \implies \dots k = 0,2$	1
	Point (-2,-1,3) or (4,3,7) OR	
	D.r.'s $\vec{b_1}(3, -16,7), \vec{b_2}(3,8,-5),$	1
		1
	\vec{b} is perpendicular to $\vec{b_1}$ and $\vec{b_2}$ so $\vec{b} = \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix} = 24\hat{i} + 36\hat{j} + 72\hat{k}$	1
	So, the required equation of line is $\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda_1(24\hat{i} + 36\hat{j} + 72\hat{k})$	
30.	Z at (4,0) 40	1.5
	Z at 82	
	(14/5,18/5) Z at (0,5) 75	
	Z at (0,0) = 0	
	Z is maximum at $x = \frac{14}{5}$, $y = \frac{18}{5}$ and maximum value of z is 82.	
		1.5

	2	
	$x^{2} = x + 2$ $\Rightarrow x^{2} - x - 2 = 0$	1
	$\Rightarrow x^{-} - x^{-} 2 = 0$ $\Rightarrow (x-2)(x+1) = 0 \Rightarrow x = 2, -1$	
	when $x = -1$, $y = \frac{1}{4}$ and $x = 2 \Rightarrow y = 1$	1
	•	1
	So the intersection point of these two curve are A (-1, $\frac{1}{4}$) and B (2,1)	
	Now required Area = $\int_{-1}^{2} \frac{x+2}{4} dx - \int_{-1}^{2} \frac{x^2}{4} dx = \int_{-1}^{2} \left(\frac{x+2}{4} - \frac{x^2}{4}\right) dx = \frac{x^2}{8} + \frac{x}{2} - \frac{x^3}{12}\Big]_{-1}^{2} =$	
	$\frac{3}{8}\frac{3}{2} - \frac{3}{4} = \frac{9}{8}$	2
	So Area bounded by the curve $x^2 = 4y$ and the line $x = 4y-2$ is $\frac{9}{8}$ square unit.	
35.	$\frac{x+1}{2} = \frac{y-3}{-2} = \frac{z}{-1} = k \rightarrow (x,y,z) = P (2k-1,-2k+3,-k)$ be the foot of the perpendicular from	1
	A(1,2,-3). d.r. AP (2k-2,-2k+1,-k+3) is perpendicular to line with d.r.(2,-2,-1)	1
	2(2k-2)-2(-2k+1)-1(-k+3) = 0 . So k=1 \rightarrow foot of perpendicular (1,1, -1)	2 1
	Image of point A is (1,0,1) OR	
	$\frac{x-1}{2} = \frac{y-a}{3} = \frac{z-3}{4} = k (say) \to (x, y, z) = (2k+1, 3k+a, 4k+3)$	1
	$\frac{x-4}{5} = \frac{y-1}{2} = z = m$ (say), (x,y,z) = (5m+4,2m+1,m)	1
	Lines intersect $\rightarrow (2k + 1, 3k + a, 4k + 3) = (5m + 4, 2m + 1, m)$	1
	k=-1, m= -1 a=2	1
	point of intersection is (-1,-1,-1).	
	SECTION E	
36.	(i) not injective as let a=1,b=-1, $a \neq b$, but $f(a) = f(b) = 3a^2=3b^2=3$ (ii) not bijective as for $f(u)$. There is no network to y for which $f(u) = 2u^2$	1
50.	(ii) not bijective as for $f(x)=7$ there is no natural no. x for which $f(x)=3x^2$ (iii) bijective as f is both one-one and onto	2
	OR Range of function is $\{3x^2, x \in N\} = \{3, 12, 27, 48,\}$	
	f(3) = 27	
37.	(i) $y=4x-(x^2/2)$, $dy/dx = 4-x$	1
	So rate of growth the plant is $(4-x)$ cm per day.	1
	(ii) For maximum height dy/dx =0, x=4.now $\frac{d^2y}{dx^2}$ = -1<0 at x=4. Hence y is maximum at x=4 or it will take 4 days for the plant to grow to the	
	maximum height.	
	(iii)As y is maximum at x=4,so maximum height of plant $\{y\}_{x=4} = 4x4 - (1/2)4^2 = 8$ cm OR	2
	As $y=4x-(1/2)x^2$, at $x=2$, $y=6$ cm.	
	Height of the plant after 2 days is 6 cm	
38.	(i) $P(E_1) = 3/5$ (ii) $P(E/E_1) = P(student answers correctly given that he knows the answer)=1$	1
	(iii) $\sum_{k=1}^{2} P(E E_k) P(E_k) = P(E E_1)P(E_1) + P(E E_2) P(E_2) =$	
	1x(3/5) + (1/3)x(2/5) = 11/15 OR	2
	$P(E_1/E) = \frac{P(E/E_1)P(E_1)}{P(\frac{E}{E_1})P(E_1) + P(E/E_2)P(E_2)} = \frac{\frac{1X_3}{5}}{\frac{1X_3}{5} + (\frac{1}{3})X^2/5} = \dots = 9/11$	